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ABSTRACT

We have made a detailed study of the formation of the strongest ultra-
violet emission lines of Mg II, O I, C II, and C III in the solar atmosphere.
We solve the equations of statistical equilibrium and radiative transfer for
each ion, using a general computer program that is capable of solving non-
LTE line-formation problems for arbitrary atmospheric and atomic models.
Interpreting the results in terms of the structure of the solar atmosphere,
we conclude that the HSRA atmosphere has a temperature too low by about
500 K near h= 1100 km and that a temperature plateau with Te =~ 18,000 K
and width close to 60 km exists in the upper chromosphere. We also inves-
tigate the structure of the solar atmosphere in the range 20, 000 to 100, 000 K

and the effects of microturbulence on the formation of lines.

We solve some approximate analytic line-formation problems relevant
to the more exact solutions derived later. Inthe Appendix we attempt to
make the best possible fit to the Ca II K line center-to-limb profiles with a
one-component atmosphere, with an assumed source function and micro-

turbulent velocity.



RESUME

Nous avons fait une etude détaillee de la formation dans l'at-
mosphere solaire des raies d'émission dans l'ultraviolet les plus
intenses de Mgll, 0 I, C II et C III. Nous résolvons les dqua- .
tiors de 1'équilibre statistique et du transfert radiatif pour
chaque ion, en employant un programme général qui est capable de
résoudre les problemes de la formation des raies sans ETL pour des
modeles atmospheériques et atomiques arbitraires. En interprétant
les reésultats du point de vue de la structure de l'atmosphere so-
laire, nous concluons que l'atmosphere HSRA a une tempeérature trop
basse d'environ 500°K pres de h = 1100 km et qu'un plateau de la
temperature a Te ~ 18.000 K et sur une largeur voisine de 60 km
existe dans la chromosphére superieure. Nous examinons aussi la
structure de l'atmosphere solaire dans le domaine de 20,000 a
100.000 K et les effets de la microturbulence sur la formation des

raies.

Nous résolvons certains problémes analytiques et approximatifs
de formation de raies applicables aux solutions plus exactes dé-
rivées plus tard. Dans l'Appendice, nous essayons de faire con-
corder au mieux les profils des raies de Ca II K, du centre au
bord, avec une atmosphére a une composante ayant une fonction

0 . S
source et une vitesse de microturbulence connues a l'avance.



KOHCITEKT

My mpomenany meTaylbHOe u3yueHue 06pasoBaHus Haubolee
CUNBHHX JUHUN ynbrpaduoneTtoBoro usanyueHua Mg II, O I, C II u
C ITT B comnueuHoli armocdepe. M pemaeM ypaBHEeHUA CTATUCTUUECKOTO
PaBHOBeCUA U M3JIYyUawLero nepeHoca OJA KaXIOTO MOHa, NONb3IYACH
ofmeV NOpOTrpaMMOll IJs 3JNEeKTPOHHOW CUeTHO-Demawiel MamuuHb CoC0o0-—
HOil pewaTs 3anaunm ofpasoBaHmsa He-MTP NUHNE IJIA OTpOUS3BOIBHBX
aTmMocepHHX ¥ aTOMHHX Momenel. PaccmaTpuBasd pe3yilbTaTH C TOUKHU
3pEeHUA CTPYKTYDH CONHEeuUHO# aTtmocdepi, MH NPWUIK K BHBOLY UTO
atmochepa I'CIA mmeeT TemDepaTypy uepel3uyp HUIKYW, MOPUMEDPHO Ha
500°K B6nusu h=1100 KM u uTO TeMIiepaTypHOe IIINaTO C Te::18OOOOK
v WUPUHON OKONO 16 KM cymecTByeT B BepxHelt xpomochepe. Mu Tawxe
NCCNEenoBall CTPYKTYPY CONHeuHON aTmocdepr B nuanaszoHe oT 20000
no 100000°K u apdeKT MUKDPOTYPOYIEHTHOCTeW Ha o0pal3oBaHUe IUHUI.

Mpl pemaeM HeCKONBKO TPUOHUBUTENBHHX ¥ QHANUTUUECKUX 3anau
06pas0BaHUA JNHUN UMeOUUX OTHOWEHMe K 00Jiee TOUHOMY pEeUeHU
BHBOLOUMOMY TO30HEee. B IPUNOXEHUUN M IIHTaeMcd MTOAYUUTH Haubojee
'6nM3Kyw IPUTOHKEY K npodunam neHTp aunuu-nvm6 Ca II K ¢ omuo-
KOMIIOHEHTHO# aTmMocdepoil ¢ TPemnnoNoxeHHON (QYyHKIred UCTOURUKA U

MUKPOTYPOYJIEeHTHON CKCOPOCTHI.

vii



ANALYSIS OF SOLAR ULTRAVIOLET LINES

Eric Chipman

1. HISTORY AND THEORY

1.1 History

The study of spectral lines and line formation in astronomical objects has
been carried on ever since the early experiments of Kirchoff and Bunsen.
Using only information about wavelengths, one can identify elements that
are present in a star or nebula, but one cannot obtain much more informa-
tion. Schuster (1905), in his classic paper entitled '""Radiation Through a
Foggy Atmosphere, ' was the first to attack quantitatively and in detail the
problem of line formation. He distinguished clearly between absorption and

scattering and solved several simple cases analytically.

Many authors followed this general line of development. The so-called
Schuster-Schwarzschild and Milne-Eddington models for the formation of lines
were formulated and used extensively. In addition, the theory of ionization
and excitation, as expressed by the Saha-Boltzmann equation, enabled
astronomers to place stars on a temperature scale and implied that all normal
stars have approximately equal compositions. Several workers, including
Rosseland (1926) and Cillie (1932), developed the theory of line formation and
radiative transfer in stellar atmospheres in terms of microscopic processes.
Rosseland and Cillie were primarily concerned with the formation of emission
lines in stars and nebulae, but most of their ideas can be applied to absorption
lines as well. Milne (1930) summarized the current ideas on scattering and

pure absorption in the formation of lines and continua.



Plaskett (1931) made a very detailed study of the Mg I b lines, which fall
near A 5184. He used center-to-limb observations of the line profiles and
attempted to interpret these through the use of both the Schuster-Schwarzschild
and the Milne-Eddington approximations. He showed that neither pure
absorption nor pure coherent scattering will give the observed center-to-limb
behavior of the lines. He pointed out the need for a statistical equilibrium,
or non-LTE (local thermodynamic equilibrium), treatment of the transfer
problem. At that time, work on strong absorption lines was somewhat
hampered by the observed line profiles, which gave central intensities for
the b lines almost four times larger than does more recent and more accurate

work.

Korff (1932) showed that the shapes of the wings of the b lines correspond
closely to the simple damping theory but are somewhat greater in absolute

strength than predicted by the theory.

A series of papers collectively entitled Physical Processes in Gaseous '

Nebulae was published by Menzel, Baker, Aller, and Goldberg between 1937

and 1945. These papers all deal with line and continuum formation in terms
of microscopic processes. Most deal with optically thin lines, but some
(e.g., Baker, Aller, and Menzel, 1939) treat radiative transfer in the Lyman
continuum. As in the work by Rosseland and Cillie, these papers deal
primarily with planetary nebulae, but the methods can often be applied to

other objects.

In the late 1940s, two groups, one in the United States and the other in
Australia, began working independently on the problem of radiative transfer
and non-LTE line formation in the solar chromosphere. Thomas (1948) and
Giovanelli (1949) and their collaborators also made the first attempts to
define a completely general non-LTE approach to the state of a stellar atmos-
phere or nebula. The radiation field was not treated self-consistently in these
papers, however, so line formation in optically thick lines could not be dealt

with accurately.



In the work of Plaskett and Korff and in other early analyses of solar
absorption lines, the assumption of coherent scattering within the line was
always made. That is, it was assumed that one can compute the radiative-
transfer problem at each wavelength independent of all other wavelengths.
This is not true, since for strong lines it is common for a photon to be
absorbed at one wavelength and very soon thereafter to be reemitted at
another wavelength within the same line. If the wavelengths of absorption
and reemission are independent of one another, we have what is known as
completely noncoherent scattering, or as complete frequency redistribution
within the line, or as a frequency-independent line source function. Miyamoto
(1954) found that the disk-center profiles of the Mg b lines could be explained
better by noncoherent scattering theory than by coherent scattering. In his
analysis, he used an assumed source function and a constant Doppler width.
The center-to-limb profile variations seem, however, to correspond better

to a coherent scattering theory.

The question of whether completely coherent or completely noncoherent
scattering theory could adequately account for solar line profiles was debated
for several years. Thomas (1957) showed that within three Doppler widths
of line center, the assumption of complete frequency redistribution in the
rest frame of the atom is valid. His paper was the first of an important

series by Thomas, Jefferies, White, and Zirker entitled The Source Func-

tion in a Non-Equilibrium Atmosphere. These papers worked out the

modern formulation of the problem of non-LTE line formation and pointed
the way toward the numerical solution of realistic problems, as opposed to
special analytic solutions. The interaction between different lines in
multiplets was considered, as well as the general problem of mulcilevel,
many-line line-formation cases (Jefferies, 1960). The actual methods of
solution required large amounts of computing and had to await the develop-
ment of electronic computers. Tomita (1960) attempted to treat the forma-
tion of the Na D lines under the assumption of noncoherent scattering. He
was forced, however, to use several highly simplifying assumptions in order
to make the problem tractable for hand calculation, so his results are some-

what open to question. For instance, Tomita used only one frequency point



in solving the noncoherent line-formation problem, but as we show below
(see Section 1. 3), this does not yield the correct source-function behavior
at intermediate optical depths. In addition, in determining the Na I/Na II
ionization equilibrium, he assumed a Boltzmann population distribution for
the various levels of Na I, which is certainly incorrect at small optical
depths. In fact, the ground state will be greatly overpopulated with respect
to the excited states, and we cannot neglect photoionization from the ground

state, as is implied by Tomita's Figure 1.

The question of the general validity of the assumption of complete fre-
quency redistribution has often been raised. Jefferies and White (1960) made
some calculations on the effects of collisions, and the resulting changes in
velocity with respect to a stationary observer, on the redistribution of
absorbed and emitted photons. The scattering was assumed to be coherent
in the rest frame of the atom. Finn (1967) made detailed calculations in which
he took into account the fact that complete redistribution in the rest frame of
the moving atoms, such as one might find for impact collisional broadening,
is not equivalent to complete redistribution in the rest frame of a stationary
observer. He found considerable effects on the computed source functions,
but negligible effects on the resulting line profiles. Hummer (1969) solved
several cases, using a frequency-dependent isotropic source function, where
he included noncoherence effects due to Doppler, natural, and collisional
broadening. Hummer finds that the frequency-dependent and frequency-
independent cases yield similar emergent intensities from the line center out
to about three Doppler widths. Beyond this point, the frequency-dependent
case approaches coherent scattering, with a resultant low emergent intensity.
Hummer's neglect of continuous absorption sources, however, makes it
difficult to apply his results to line formation in the sun. One source of non-
coherence not treated by any of the above authors occurs in multiplets, where
collisions between levels that lie close together in energy can be very rapid,
approaching spontaneous radiative-transition rates. Such collisional transi-
tions will destroy almost all coherence of absorbed and emitted photons.

For most purposes, it would seem that the assumption of complete frequency

redistribution throughout the line will produce reasonably accurate results.



This problem, along with the rest of the theory of line formation, is discussed

in detail in Jefferies' recent book, Spectral Line Formation (1968). Another

general discussion of line-formation theory is the monograph by Thomas
(1965); this work contains a useful bibliography on the development of non-

LTE theory.

The first series of computer programs in this field were capable of
solving only problems where the Doppler width remained constant throughout
the region of line formation. Such programs were used by Avrett (1965) and
by Avrett and Hummer (1965) to compute the variation with optical depth of
the source function for several parameterized models with constant proper-
ties through a semi-infinite atmosphere. The method of solution is described
by Avrett and Loeser (1966). Using realistic model atmospheres, Johnson
(1964), Finn, Mugglestone and Young (1967), and Chamaraux (1967) studied
the formation of the Na D lines. Linsky (1968) studied the H and K lines of
Ca Il with a computer program that was similar to that of Avrett and Loeser

(1966), but that was capable of solving multilevel line-formation problems.

Soon after this, a new method of simultaneous solution of the equations
of radiative transfer and statistical equilibrium was developed, based on the
scheme proposed by Feautrier (1964) for linearization of the problem. This
method is capable of taking into account in a self-consistent way the effects
of variable Doppler width through the region of line formation. Computer
programs of this type were described by Cuny (1967), by Athay and Skumanich
(1967), and by Avrett and Loeser (1969). Kalkofen (1968a) has described a
method for the simultaneous solution of two or more strongly coupled lines;

it avoids some of the convergence problems of the simpler iterative approach.

These various computer programs were first used to study the forma-
tion of the resonance lines of hydrogen (Cuny, 1968) and the H and K lines of
Ca II and of Mg II (Dumont, 1967a,b; Athay and Skumanich, 1968a,b). More
recently, studies have been made of the formation of lines of Na I and Mg I

(Athay and Canfield, 1969) and of O I (Athay and Canfield, 1970).



This research has been of some value in elucidating the solar atmosphere,
but in general no more than one or two multiplets have been studied at one
time. There is a tendency for each paper to put forth a new model of the solar
chromosphere, with little investigation of whether or not the results of the
analyses of various lines are mutually consistent and whether or not the various
derived atmospheres have essential differences. Of course, one long-
recognized basic difficulty with line-profile analysis is that model atmospheres
cannot be derived explicitly from line profiles; rather, one can only show that
a given atmosphere is consistent with the observed profiles and realize that
it is possible that other quite different atmospheres might produce equally
good agreement. Nevertheless, it was felt that it would be valuable to study
lines of several different atoms and ions simultaneously in an attempt to
derive an atmosphere that might produce computed line profiles in agreement

with the observations for as many lines as possible.

We wished to choose lines that are formed in overlapping, but not identical,
regions of the solar atmosphere. We also decided to investigate some lines
formed in the very high chromosphere, at temperatures approaching lO5 K.
After some consideration and initial experimentation, we chose to study in
detail the following neutral atoms and ions: Mg II (the H and K lines), O 1
(the X 1305 triplet), C II (the A 1335 doublet), and C III (the X977 and A 1176
lines). We were somewhat influenced in our choice of lines by the availability
of new absolute-intensity data and limb-brightening curves for the lines of
O I, CII, and C III obtained from the OSO 4 satellite. We did not investigate
in detail the lines of Ca II or of hydrogen, since these species are currently
being studied, with methods very similar to ours, by E. H. Avrett, J. L.
Linsky, and J. Vernazza. We did in fact make a short study of the resonance
K line of Ca II (see the Appendix), but this line is treated in a rather different
manner than for the other lines in our work; for the K line, we have simply
postulated the source function as a function of optical depth, rather than

solving the line-transfer equations.

The lines of the four atomic species mentioned above are formed over

the whole solar chromosphere from the temperature minimum to the highest



chromosphere. We have tried to make a self-consistent interpretation of
the formation of all these lines and to determine what is implied about the

structure of the solar atmosphere by the observations of these lines.

1.2 Our Method of Solution

For the solution of the equations of radiative transfer and statistical
equilibrium reported in Sections 4 through 7, we have used a very general
computer program, called PANDORA, which has been created primarily
by E. H. Avrett and the programing done by R. Loeser (see Avrett and
Loeser, 1969). This computer program is too large and complex to be
described completely here, but we shall enumerate some of its most impor-
tant features and give examples of the method of solution of some illustrative

cases.

PANDORA is generalized in the sense that it can automatically set up
the equations of statistical equilibrium and thus determine the parameters
to be inserted in the radiative-transfer equations for any model atom
chosen. The number of atomic levels and lines to be treated and the number
of depth points in the model atmosphere can be arbitrary within limits set
only by the memory-storage capacity of the computer. Of course, the amount
of computer time required increases rapidly as the number of lines and
~ atmospheric depth points is increased. We usually employ model atoms with
from 3 to 6 levels, with up to 3 lines, and 33 to 44 depth points. One must
specify the atomic parameters relevant to each level of the model atom, the
transition rates between the levels, the ionization rates from each level, the
model atmosphere to be used, and various other quantities. The treatment
of the atomic parameters is discussed in Section 3, so here we simply assume

that all these quantities are known.

In our examples, we shall see that it is necessary to know the ''continuum
source function, ' that is, the source function associated with the continuous
opacity sources at the wavelength of the line under consideration. This source

function is assumed constant over the small wavelength interval covered by



the line. PANDORA computes this continuum source function before solving
the line-transfer problem. For a given model atmosphere, the opacities due
to all the most important opacity sources are computed at each point in the
atmosphere. These opacity sources include electron and Rayleigh scattering
and H and H bound-free and free-free opacity, as well as opacity due to the
neutral atoms silicon, magnesium, carbon, and aluminum. Then the equation
for the continuum source function, including the effects of scattering, is
solved by a matrix inversion in a manner similar to that described below for

the line source function. The equation for the continuum source function is

ZkYSZ
s - x ¢ (1)

where SZ is the constituent source function corresponding to the individual
opacity kY. For electron and Rayleigh scattering, kY = ¢ and SZ = J, where
J is the local mean intensity of radiation at the specified wavelength. For
free-free opacities and others for which LTE is assumed, SZ = B, where B
is the Planck function for the local electron temperature. In other cases
(for bound-free hydrogen opacity in particular, and optionally for neutral
carbon bound-free opacity), kY and Sz are determined from the number densi-

ties computed by PANDORA for the particular atomic constituent.

Besides computing the continuum source function at the wavelength of
any line being studied, PANDORA will compute the continuum source function
and mean intensity of radiation at each depth point for one or more wave-
lengths within each ionization continuum for the atom under study. Thus,
we can merely specify the photoionization cross section from each level, and
the photoionization rates are computed automatically. Alternatively, we can
specify a radiation temperature for each continuum at each depth point, and
the photoionization rates will be computed on the assumption of a blackbody

radiation field at this temperature.



1.2.1 The two-level case

As an example, let us consider the very simple case of a two-level atom
with no continuum, formed in an atmosphere with some source of continuous
absorption. If the populations of the two levels are assumed to be time inde-

pendent, we have
n(Cpp +IB1,) =, (Cyy + A, +T By ) ()

where C12 and C21 are collisional transition rates; AZl’ BIZ’ and 321 are

the Einstein A's and B's for spontaneous emission, absorption, and stimulated

emission, respectively, and J is the mean radiation field in the line, given

3=f<I>Jdv, (3)
v v

f@vdvzl . (4)

Zhv:zf'1
o= —= (5)
C
-hv_./kT
21
B=oe , (6)

=175 . ™)




and in LTE we have

v
RS}

»—-9 lNg

B (8)

where ®, and ®, are the statistical weights of levels 2 and 1. Then from a

consideration of the principle of detailed balance, we can readily show that

@,
Ciz2= m_l' PCy 9)

and if the density is so low that collisions are negligible, in thermodynamic

equilibrium
n) BB12 =n, (A21 + B BZI) s (10)

which can be reduced, by using equations (8) and (7), to

2, 2,

aBlZ=(1-B)a—- A21+S;-o,[3821 . (11)
1

The Einstein A's and B's must be independent of temperature (and hence of B),

so we equate coefficients and find

>, A
¥ Ay
Blz‘al a (12)
and
A
821
Bor® % - (13)

10



Substituting these expressions for the B's in equation (2) and using equation (7)

for B, we can show with some algebra

C
T+5>-(1-8)B
- = 2! (14)
@) 1, Aol

This quantity is called the source function

S (15)

1

9]
l‘\Pl»—-s e

Note that S approaches B as n, /n2 approaches its LTE value. Also it is a
sufficient condition for S to equal B that either (1) J = B or (2) C21 /A21 > 1,

both of which we would expect from physical considerations.
We shall find it useful to define

C
21

¢ =55 (1-p) (16)
A21

and to write equation (14) as

s(r) = S el B (17)

where T is the optical depth at some frequency.

All of the above development has been used in several investigations by
many workers (see Section 1.1 for references, especially those later than
Thomas (1957)). In what follows, we outline a method used in our particular
case to solve problems in which the Doppler width of the line varies with
depth. If we represent some characteristic (constant) value of the Doppler width

by (A )\D> or <AvD), we can introduce a dimensionless wavelength variable

11



X:)\-)\O =v—vO 18)
(arg) ~ (avpy)

and a new profile function

¢x('r) = AvD('r) <I>X('r) , (19)

with the normalization

2(Avy) ¢
Avp (1) {%‘T)dxﬂ : (20)

The profile function will in general be a Voigt profile, which is produced by

combined Doppler broadening and damping and is given by

+00 _,2
o () =241 f e & , (21)
m -00

(Av

' ) x|2
2 D
[a(T)] + [Z - (AvD T)]
where

I s

a(7) = 4 AvD('r) (22)

is the ratio of damping width to Doppler width at depth +. If we denote a line
opacity Ky such that

y =K ¢, (23)

and let dr = KL dz, and r = KC/KL, where Kc is the continuous opacity, we

can write the transfer equation as

12



p dL (7, )
B P ¢, (7) [Ix('r,p) - S(7)] + r(7) [IX(‘T,l.L) -S.(n] (24)
where SC(T) is the continuum source function discussed above, and p is the
cosine of the angle between the direction of propagation and the upward vertical.
If we define the monochromatic optical depth Ty and the total source function

Sx by

T =f (o, (t) + r(t)] dt (25)
0
and
¢_S+rS
N T (26)
then

M dIX('rx,p)

dr
x

=L (1 ,u) - S (1) . (27)

and the mean intensity is given by
00
1
J (1) =73 f E, (It -7 |) s (t)dt . (28)
0

where El(-r) is the first exponential integral.

The El function arises in the integration over angles, and in effect con-
verts our integration over angles and optical depths into simply an integration
over optical depths. This transformation depends on the fact that the line pro-
file is not dependent on angle, so our computer program in its present form

cannot treat anisotropic turbulence or systematic mass motions in atmospheres.

13



In what follows, let us use i and j as subscripts denoting depth points,
and subscript k will denote frequency points, Then equation (3) can be

rewritten, following Avrett (1971), as

K
Ji = E Yig Jik (29)
k=1

where the y's are normalized such that

i

V=1 (30)
Then
N K
- _ (A)
i = §: z :Yik Wik S (31)
=1 k=1

where A denotes the A operator, used in equation (28). We discuss below the

determination of the coefficients Wijk'

If we define

K
(A) _ (A)
Wi = ZYik Wiik (32)
k=1
and
K . |
(A) _ Z (A) jk
;T Vik Wijk $ + 7 ’ (33)
o k=l jk Tk

14



from the definition of the monochromatic source function (26), it follows that

N .

Z {[ () (A)} s, +x S50 (34)
_ i i i)

j=

Combining equation (17) with equation (34), we have

N N
(1+§€)S, - Z [Wg\) 1(3/&)} S, = & B, + Z 1(3’\) sJC . (35)
=1 j=1

Here we have N equations in the N unknowns S, which are solved by a matrix

inversion procedure.

A different equation for the Si's can be written in terms of the (A -1)

operator, defined by

ZW(A l)s ZW(A)S , (36)

which implies

N N
(Ao _ _ (A-1)
(1+E)S, - Zwij S, = &38; Zwij s, (37)
=1 =1

If we now write

Z (A)s Z (A - 1)s +6.S, | (38)

15



and a similar equation in SJ.C, where

K r
_ Yik Tik : (39)
- z : $.. + r. ’

=1 ik ik

we can express equation (35) in the form

N
1 (A-1) (A-l):l
E +6 E[W ij J

=1

EB + 6. S
(A-1)
= €1+6 * & +6 § : S : (40)

As pointed out by Avrett (1971), equations (35) and (40) have the same proper-
ties and have identical solutions, provided the Yik coefficients are accurately

normalized according to equation (30).

Athay and Skumanich (1967) have derived a version of equation (40)
that gives the total source function at line center in terms of the derivative

of the monochromatic fluxes:

0o
2N

X
(T+7,) (E+8) ,!- o+ 1o d7 H dx (41)

5.(0)= B +

where N is a normalizing factor arising in the normalization of the profile
function, and the zeros refer to line-center quantities. This equation is

closely related to equation (40) since

d
I, (1) =8 (1) = I B (42)
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and

N
e (A-1)
Tik = Sik 7 2 :Wijk Sik (43)
=1

The differences between the expressions of Avrett and of Athay and Skumanich

are due chiefly to different ways of determining the integral operator.

Kalkofen's (1968a) method of simultaneous solution for the source function
of two or more lines involves writing the equations of statistical equilibrium
as a matrix equation in column vectors of M components, where M is the
number of lines. It is then possible, if we can neglect stimulated emissions,
to derive M XN linear equations in an equal number of unknowns, where N is
the number of depth points. At high temperatures, stimulated emission is
important, and the coupling between the source functions of different lines
is nonlinear. Kalkofen describes a perturbation method for the rapid solution

of the resulting nonlinear equations.

In expressing equation (28) in terms of discrete depths and frequencies, we

have (omitting the k subscripts for simplicity)

00 N
Ji=%fEl(|t--ril)S(t)j dt:ZWi(Jl.\‘) sj . (44)
0 j:l

The coefficients ij&) can be shown to be independent of the function S(7).
They depend only on the given T values at frequency k, and on the way in
which the function S(7) is assumed to vary between the given T points (that is,
linearly, quadratically, etc.). For a given k or x, the 7 values are the

monochromatic depths defined by equation (25).

To calculate the Wl(‘;x) values (Avrett and Loeser, 1963), we let

N
S(1) = Zf(—r)j T (45)
=1

17



where

f
1 j=1
(1_.I_> (l_)\_T> 0< T =<+ j=2,3,... (N-1)
T. T. J
J J
(7). = ¢
J 0 -r>-rJ_ j=2,3,... (N-1)
.

For \ =1, this corresponds to the assumption that S(T) varies parabolically
between the T points, with a slope continuous across the v points. We must

also specify the starting slope, which is done by taking a linear variation of

S(T) between the two deepest T points. For \ = 0, we have a linear variation
from point to point, and intermediate A values produce intermediate degrees

of damping. In our calculations, we generally used the parabolic (A = 1) approxi-
mation, but for some extreme cases this choice produces negative source

functions near the temperature minimum, and it was necessary to set A=0.

We can write the left side of equation (44) as

N
L= G e -
=1
where
[0.]
c® =L (e de-nhema , (48)
0

and from equation (45)

N

_ -1
c, = 2 £ 8t (49)

=1
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where fi-jl is the inverse of fij = f(Ti)j' From equations (44), (47), and (49),
it then follows that

N

(A) _ (A) (-1

Wi _ZGM £ (50)
k=1

)

A similar development yields Wf? -1 , if we write equation (44) as

1) N
J, - 8(7) = %—J E, ([t-1 S(t)j dt - S(7,) = ZWS&'” S(TJ-) (51)
0 j=1
and equation (48) as
0
Gi(é\‘l)zéjEl(lt—-ri“f(t)j dt - f() . (52)
0

In practice, we have a choice of recalculating the Wij's anew for each
frequency, line, and iteration, or we can calculate them once for a standard
7 set and then use the following depth transformation involving the monochro-

matic optical depths for calculating all the Wij sets.

If we are given W(A -1) (Xl)ij (or W(A) (Xl)ij) at a standard T set corres-

ponding to frequency x,, we wish to find the corresponding set for another

l)

frequency x,, where we have another set of T points. Let us express the

2)
left side of equation (51) as

N
G = (A—l)S:ZWi(?_l)SJ. , (53)
=1

19



where A -1 is a single operator. We use the operator a to linearly interpolate

from S as a function of TXZ to S as a function of -rxl, so

S('rxl) =a S(-rxz) . (54)

Then, using the T, values, we could determine
1

G(Txl) = (A-l)_r S(’rxl) . (55)
x

1

Finally, G as a function of -rXz could be determined by the linear interpolation

matrix pB:

G(TXZ) =p G(Txl) - (56)

Putting these operators together, we have

Glry)) = B{ (A~ 1)TXl <a STX> : (57)
2

which is the same as

Glry,) = [ﬁ o, a] 5(7y,) (58)

The matrix [{3 (A-1), o.il is, apart from the interpolation approximations,
X

the same as (A - 1), or W}((A lel), which avoids the recomputation of all the
X
2 2
Wij's from the definition. The matrices a and f are easily derived and are

all zeros except for two numbers in each row or column, respectively.
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This procedure, called '""mapping, " can save approximately 30% of the
computer time used otherwise, but it has its hazards. There appears to be
a systematic error of a few percent in the surface values of source functions
derived by using the mapping technique. What is more, if we have more than
two T points that fall between a given adjacent pair of T points in our '"standard"
T set, the central points are not treated correctly, in that their source func-
tions are ignored in computing the intensity integrals. This problem does not
generally arise for most strong lines, but for lines such as the C II and C III

resonance lines, the mapping method is not usable.

Kalkofen (1968b) has investigated the relative accuracy of results obtained,
using linear and parabolic interpolation in the transformations from the pre-
tabulated Wij matrix used in the mapping procedure to the Wijk,s that are
finally used. For an atmosphere with B and ¢ constant, he found typical
errors in surface value of the source function of 1% for linear and 0.19% for
quadratic interpolation, although in some instances, the linear results were
as bad as 6%. The mapping subroutine in PANDORA was written by using linear
interpolation. In those cases where accuracy seemed important, we bypassed
the mapping procedure and had the program calculate each Wijk directly.

The source functions at wavelengths in the ionization continua are always

calculated without using the mapping procedure.

The simple two-level problem is an instructive example, and the curves
given by Avrett (1965) and by Hummer (1968) show many aspects of the
problem. In particular, we should note that for B = 1 (constant) and constant
€, S departs from B first at 7= 1/e (T = line-center optical depth) and reaches
a minimum value of S = Ne in the surface region 7% 10_1. These are useful
indications of the range of line T, which we must consider in a non-LTE

problem. In this approximation, the residual intensity at line center is 2Nk .
1.2.2 Multilevel atoms and statistical equilibrium

In most cases of interest, one must consider three or more energy levels,

plus a continuum, in order to represent reasonably the physical situation.
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When there is more than one radiative transition to be solved, we cannot solve
the whole problem at once, but must iterate, solving each transition by using
parameters for the others derived from the last iteration. We will develop
the mathematics for multilevel atoms in a general form first, and then give

an example, for the three-level case.

In a steady state, the number of transitions into and out of any level

must be equal, so we have

N N
n, Zplm+P1K= Z n P_o+n P, (59)
m=1 m=1 '
m¥/ m#4
where n represents the number density of ionized atoms, Pﬂm is the transi-
tion rate per atom in level ¢ per unit time to level m. PlK and PK.@ represent
ionization and recombination. The equation for the continuum is
N N
HKE:me By Pox (60)
f::l f‘.:l

which can be used, along with equation (59) and the specified total number of

atoms

n=nK+nl+n2+...+nN (61)

to eliminate nK. Now define

PiK PK'
PN (62)
2P

=1
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so that equation (59) becomes

N N
an(leerlm): an(Pml+pm£) . (63)
m=1 m=1
m# 4 ey,

If we define the integrated mean intensity

T -1
T =20 fdwfdv e 1 (w) (64)

where Iv (w) is the specific intensity for solid angle w, and the line source

function

S, = —1% (65)

(66)

which is a measure of the lack of detailed balance of upward and downward

radiative transitions in the ji line. Finally, we have

oj(Aj + By Tii) T my Byy Ty T my Ay ey o (67)

Where we have used the Einstein A's and B's.

For our purposes, it is more convenient to use in place of the n.'s the
i

departure coefficients, and, in particular, the ratios of the bi's defined by
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e
i

b. n. ni
BT TRn (68)
i nj i

2

where n?/n; is the ratio defined by the Boltzmann equation. If we also say

-hw /KT
Y, =, € (69)

s 14 -— ! - ! -
and define Amn = Y Amn’ mn = Ym Cmn’ and Pron = Ym Pmn’ W€ can

write the statistical equilibrium equation (63) as

2-1 N
! ! !
b, Z Ap Pyt Z Com * Pom)
=1 m=1

m¥4{

N .
—_ ! 4 !’
= bj Ajl pjf + :}: bn (le + Pml) . (70)
j m=1

m#*4

Note also that with our definitions, Ci,j = Cji'
We wish to relate the departure coefficients to the source-function equa-

tion in the form of (35), which is the equation that we actually solve. To do

this, we note that the equation

b
u
b, (Pyp, + &)= & (1)

is equivalent to

J . +(1-B)E, B
_ —ulL 2 "ul,
SaL =" 17 (€, -B E)) ) (72)
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with our previous definition of B (equation 6), which folilows from the definition

of p (equation 66) and equation (65), which can be expressed as

ZhviL/c2
SuL =%, hv . JET : (73)

.__.I_Je uL _l
b
u

For the case of the two-level atom with no continuum, we have

€ =§&,=C, /A,

plex functions of the various b's, A's, C's, and p's of the problem, not

but in general the &€'s are different and are rather com-

including bu/bL or p 1- As an example, let us consider the case of the three-
level Mg I problem, with a continuum. The energy-level diagram for this

model atom is given in Figure 1 and the statistical-equilibrium equations are

I 7 4 — 4 4 7
Py(Cip+ Pit Ri3) = by (Pl +Cop) +D5(P3) (74a)

! 1 1 I —_— ! ! ! 4 1
by (Coy #Co3 4 Pp3 4P ) = by(Ag, P, +C5, +P3,) + D) (P, +Cpp)

(74Db)
and
! ! ! —_ ’ ! !
b3(Cypt o+ Py +A5, P3p) = ByPy 5 +0,(Co54P55) (74¢)
This problem has only one radiative transition, for which we can write
equation (71) in two ways: first, from (74Db),
! ! ! ! ! / ’ ’
by ( , ©32 +P32> _C21 v Ca3tPo3 TP Py <P12 * C12>
’ - ’ 7 P
b2 \ 32 A3z A3z b2 A32
(75a)

and from (67c),

25



7 ! ! ! 14 !
P3 C3p ¥ P3p ¥P31) Ch3tPh3 Py Py
5 \P32 ¥ Y = A7, %, Ay, (75b)
2 32 32 2 A3z

These two equations yield different values of El and 82 in general, so we

will have different forms of equation (72). In practice, we could solve both
versions of equation (72) and use some weighted mean of the two solutions

as our solution for the next iteration. The weights can be chosen so as to
achieve the fastest, most stable convergence to the solution. At convergence,
the solution will change very slowly from one iteration to the next, and we
will require certain products of the ratios of the b's to approach unity,

although the factors are computed independently of each other. For instance,
bZ b3 bl
5 N\s. \5 /= 1 . (76)
1 2 3
107-096

CONTINUUM

L

3g — 5.1
Js,
07
3
—3p — 27
\
AN
AN
AN
AN
\

Figure 1. Energy levels for a three-level model Mg I atom.
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Alternatively, we can use the N equations (74) for an N-level atom to
eliminate all the b's except for the ratio bu/bL for the transition in question.
We will find that we can express equation (71) now in such a way that El and
EZ

contain Pr, OF 210y b's, as equations (75) do. This method leads to faster and

contain only the P's, C's, A's, and the p's for other transitions, but do not

more certain convergence of the equations for the various radiative transitions
in question. As an illustration, let us develop this method for the three-level

case discussed above. Eliminating b1 /b2 in equations (75), we have

' 7 1 !
b3 o 4l <, bpl 4 P31 P12+P31C12>
14 ! ! ’
b2 32 A32 32 32 1)13+p12+C12

4 4 4 !
_ 1 <c' epr. 421 P13 *P2l P13) _ 1)
- ? ¥ 1 ! ’
AL, \"32 P23 T TR P v gl
in this case,
14 I ! 4
e -1 < pr 4 P31 P12 t P31 C12> 78)
- 14 4 4 2
1A, \"32 TP T Cr,
and
C/ PI +PI PI
€, = Al’ <C§2 tphs t % -:31)’ flc'n ' (79)
32 P13 7 P12 12

Note that 81 and EZ do not depend on any b ratios. Since there is only one
radiative transition in this case, El and EZ do not depend on any p values;
iteration is necessary only to determine the optical depth scale, which depends
weakly on the p's. In this respect, we have linearized the basically nonlinear
radiative-transfer equation, so we would not expect to obtain an exact solution

in one iteration.
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The solution for the three-level Mg I case converges in three or four
iterations. For the four-level Mg I case, which includes the A 2852 line, rapid
convergence is again obtained, since the two lines have no level in common.
For the five- and six-level cases, which include all three of the b lines, a
straightforward iteration approach leads to oscillations of the p's rather than to
convergence. It is necessary to damp the solutions by averaging the p's from
the last iteration with the current p's in order to obtain convergence, which

occurs within about eight iterations in our cases.

In principle, there is no limit to the number of levels and radiative
transitions that can be treated in this way. However, the amount of computing
time necessary becomes large when many lines are considered, so we would
like to use a model that contains the minimum complexity necessary to produce
the desired or observed accuracy and to reproduce the interesting features of

the problem.

1.3 Some Analytic Solutions

Realistic solutions to physical line-transfer problems require the use of
a computer, and even the idealized cases described by Avrett (1965) for
homogeneous atmospheres and extended considerably by Hummer (1968)
required computer solution because of the complexities of complete frequency
redistribution with a Gaussian or Voigt line profile. However, if we use a
rectangular or step-function line profile, and if we approximate the El exponen-
tial integral function by an exponential, it is possible to derive analytic solu-
tions for a variety of problems. One can include continuous as well as line
opacity, and the Planck function may be constant, or it may have one or more
discontinuities at specified optical depths. This type of analytic solution has
been described by Avrett (1969). We shall solve several cases here and will
discuss the implications of these solutions where relevant in later sections.
Our first example below, which is the simplest possible case, was solved by

Avrett (1969), but the other examples are original.
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Consider first the equation

S=(1-&§7J+&B , (80)

which is a slightly rewritten form of (17), with

€=—— . (81)
If we now consider a rectangular line profile, such that

o =1 for 0=sx=1/2 |,

=0 for x>1/2 , : (82)

which preserves the normalization, and if we approximate the E. function by

1

E, (x) = —‘2?- e PX (83)

where b is chosen by some '""best-fit" criterion, such as, for example, b = *\/5,

we can write

S(1) = (I - e)%f be PUT-tD) styat + €B() . (84)

0

Let us solve first the case of a semi-infinite atmosphere with constant

temperature, i.e., constant B(1) = B. We can express (84) as

T o0
S(r) = (1- &) 2 fe_b(T-t)S(t)dt+fe_b(t_T)S(t)dt + EB , (85)
0 T
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which is differentiated twice, to give
T o0
sim)=(1-82 -be'bTJ' ePts(t)dt + bePT J'e'btsm dt (86)
v 0 T
and
T Q0
S7(1)= (1- €) 2 [b% T j ePt s(t) at + b% &7 fe'bt S(t) dt
0 T
2
-b“(1-€)S(n . (87)

or, upon substitution of the integrals from (85),

s”(1) = b2 [S() - €B] - b2(1 - €) S(7) (88)

b2g[S(1) - B] . (89)

This differential equation has the general solution

eb'\/—'r_l_ce-b'\/z'r_'_B

S(t)= A (90)

We can set A = 0, because of the boundary condition requiring that S— B
as T —ow, and substitute this expression in (85) to evaluate C. Upon doing

the integrations, we have

ce®VET L B (1 44E) (%) (e PVET _ BTy &) (2) a-eP7)

ra-vB (§) e ET P g o@) -t
(91)
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which, upon equating coefficients of e_bT, yields

C=-(1-NEB ; (92)
SO

S(t)=BJ[1 - (1-«/'§)e'b“/757] . (93)

This expression contains the correct value for the source function at T=0,
S(0) = NEB (see Avrett, 1965). However, our analytic formula predicts

that the source function approaches B at an optical depth of approximately
'\[8_1 (since b = 1), whereas exact calculations with a Gaussian line profile
give S= B at v = 8_1. The difference is caused by the effects of escape of
photons in the line wings in the Gaussian case. We have plotted schematically

in Figure 2 the source functions for the analytic and exact cases.
' 107-096

T |
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Figure 2. Source functions in two approximations.
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In this approximation, we will discuss several problems of some possible
application to the various line-transfer problems considered in later sections.
In each instance, the general method of solution is the same: dduble differen-
tiation to convert the original integral equation into a differential equation,
for which we find the general solution and substitute back into the integral to
evaluate the arbitrary constants, subject to the boundary conditions. We
shall not give details of intermediate steps of any further solutions but merely

a statement of the problem, an outline of the method, and the final solution.

A case of some interest in connection with several different lines is that
of a line formed in an atmosphere with a discontinuity in microturbulent
velocity, such that the line profile changes at some depth. Dumont (1966)
showed that in semirealistic cases such a situation could result in an increase
of the surface value of the source function by a factor of 2 to 5, if AXD
increases by a factor 4 near T = 10. Consider the diagram in Figure 3. In
Figure 3, we show a situation where the profile for T < 7T is twice as broad
as for T > 7. There is continuous opacity for T > T, but we set r = KC/KL =0

for 7 <T. B is a constant throughout the atmosphere.

Region 1 Region 2
1 N
bx=Z X<wm E=loxc7
=0 X > N7 =0 x>—’\/—1T
: 2
B(v)= B B(t) =B
KC:O KC:I'KL
T=0 T=T T—

Figure 3. Diagram of profile discontinuity case.
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A situation of this sort, if occurring in a real atmosphere, might have
the effect of increasing the observed central intensity in the line, without
grossly distorting the observed line profile. This is achieved, in effect, by
feeding photons absorbed in the wings of the line in the turbulent surface
layers into the core of the line. Since the line wings in a thin surface layer
will see a radiation field arising from the photosphere equal to 1/2 B, the
source function would be expected to rise in the surface layer over the base
value of NEB. We would expect that as 7 — 0 and as T — o we would observe
an emergent intensity equal to NE B, but for intermediate values of T we will
observe an intensity greater than NEB. We shall find the result that S(t=0)
approaches B/4 rather than NE B as ¥ approaches zero, but the observed
line-center intensity does indeed reach a maximum. The value of this maxi-

mum and the associated value of T are of interest.

In what follows let us set b, the fitting parameter for the E1 function,
equal to 1. This will not change our results materially and will make the
algebra a bit easier. Also let us write our previous quantity € as El and

define
K

=X L~ .-t
82—1+r~r_KL ' (94)

First, consider the situation where we neglect absorption in the surface layer
and treat it as a pure scattering line. In this case, El = 0 in the surface
layer. In the surface layer, S = J, and our differential equations for the two

layers become

S’l' =0 (95a)
and

$;=€;5,- & B , (95b)
where

€,= € +E - E &, (96)
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The general solution in region 1 is
Si(t)= A, + Cim (97a)

and in region 2,
-'\/_83 T
SZ(T) = C2 e +B . (97b)
Upon substitution into the integral equations for regions 1 and 2, we find for

region 1

- - C

O=Al(-e_T- eT-T)+C1(e_T—TreT-T'- eTT) 4 2 e'r—'r-'\fé T
2(1 +VE)
+Be’ T (98)
In this equation, we can equate coefficients of e-T, with the result
Cl = A . (99)
The equation for region 2 yields
c, e VET
0=A - ————-B . 00
17T TTVE (100)

Now equations (98), (99), and (100) can be solved for Al

and we obtain, omitting terms of order N€in comparison with terms of order

and hence for Sl('r),
unity, T and T,

sl(-r)=3<i—i—_: . : (101)
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We could see that the value of S(0) should be B/4 for T = 0, since half the
line profile at the surface sees directly down to the photosphere, where it
sees a brightness B, diluted by a factor 2. One might expect that some
effect such as this could be important in determining the intensities at line

centers, since B/4 > NEB.

In the more general case, we must consider a finite 81 in the surface

layer. Then the source-function equation in region 1 is

T )
- - -(|t-
5,(7) = (1 -El)%fe (I-th S, (t)dt + 2 (1 -el)%f o~ (lt=7])
0 T
o0
[1- &) 5,0) + g,B] dt +2 (- el)%f et g ag 4 € B .
‘._I.
(102a)
and in region 2 is
T )
1 - - -(lt-
SZ(T) = (1 _El)zje (IT tl) Sl(t)dt-l- (1 _81)%fe (It TI)
0 T
[a-&) s, + £, B]dt + € B . (102b)
Double differentiation gives
S’l’ = 81 Sl - 81 B (103a)
and
S;=(& + &, - & &) (5,-B)= E;(5,-B) . (103Db)
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So the solutions will be

'\[El T -'\[81 T

S (1)=A; e +Cj e +B (104a)

NE, = -\/"83'r

S,(1) = A, e 3 4c.e +B . (104b)

2 2

We require S—B as T— w0, so A2 = 0. We must therefore determine Al’

1’ 2
equations in Al’ Cl’ and CZ:

C,, and C_ by substitution into equations (102). In this way, we derive three

0=A1(1-\/’el)+cl(1+\fel)+B(1-£l) , (105a)
—VE -?\fel C, (1-§&) -?V£3
0:=A1(1+\/—El)e +C1(1—'\f81)e -Tme R
— _ ~ (105b)
‘T'\/‘El -"_r'\/El -?\/83
o=A1(1-«[£1)e +cl(1+«fel)e -c2(1+«/83)e
(105¢c)
Solving, we find
-z?xfel
-B(1 +'\/El) e Y
A= -27NE, 1 +WE, (106)
[ Y -
1—«/8l
and
B(l + \fEl)
€17 -2 TVE, 1+NE; tor)
e Y - I—TE—I

where y is of order unity and is defined by
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2(1 +NE,)% (1 -NE)) - (1+NE)® (1 -NE)) 2o
= . 10
2(1+VE,)% (L +VE)) - (1-NE) (1 +VE))

This solution has the expected asymptotic behavior. For 7T very large, Al
approaches zero, and the first term in the denominator of C, becomes

negligible, so we find

Sl + e-\[El i (1+NE)) l
7= Bll - [Q+NEDQ —mfel)]s

-~NE. T
:B[(l-e 1(1-'\/81)] . (109)

For T — 0, we expand y to order NE, which yields
y=1-6NE (110)

and for 7= 7= 0, we have the same result as before (equation 101), or we

can include terms of order € in our expansion, and we have

1 + (1 —z«/sl) - 3\/81 -‘f«fel

4+ 7 (1-6NE)) (111)

S=B

Thus, if we approximate the emergent intensity by S(+=1), we find this quantity
is a maximum for t= =1, when S =2/5 B. As T increases, the surface
values of the source function fall slowly toward \/_81 B. In Figure 4, we show

schematically a possible case for 7= 0. 2.

A third case that is relevant to the C II problem discussed in Section 6

is diagramed in Figure 5.
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Figure 4. Source function for a turbulent surface layer.

Region 1 Region 2
€ = ¢ € = €
B=B B=20
=0 ‘T=; T ©

Figure 5. Diagram of hot plateau case.

We envision a hot plateau (region 1), with a much colder underlying atmos-
phere. The line extends across both regions, and with these boundary condi-

tions, we have S— 0 as T — w. Clearly, the differential equations in both
regions will be
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S"= €S- EB . (112)

So, general solutions are

e“[ET+c e'“[ET+B (113a)

Sl(T) = Al ]

and

S,(T) = C, e NET (113b)

The integral equations for regions 1 and 2 are

'\/E'r+c

-NE T
le le +

S (1) = A B

T - -
(1 - §) % J e (778) (Al JNEE c, NEE B) dt
0

T

(1 -s)%fe“t‘ﬂ (a, V€ 1o, eVE L B)ar

+

1

T

[o.¢]

+(1-§) % J e (E-7) C, e'“[“:t dt + €B , (114a)
T
and
T _
5,(r)=C, e NET_ ) s)%fe (T-t) <A1 NEE c, NEL +B) at
0
.
+(1-£)—12—f e (7 t)cz NEt 4
'._I.’
0.0}
+ (1 - s)-lz—f e (t-T) c, eNEE G (114b)



which yield the equations

(@)
]

Al(l-NfE)+Cl(l+'\f€)+B(1-€) , (115a)

TNE

o
il

+C, (1 -NfE)e-TM/—e - G, (1 -'\/E)e_?'\[e+ B(1-§&) ,
(115b)

Al +NE)e

0= A (1-VE) eTVE c, +NE) e TVE c,( NE e TVEL B - g
(115c)

By solving these equations for Al and C1 and substituting into (113a), we

have

eVETL g - NETL g
5 e?«fs

-NE T(1 -NE) +

$,(1)=B|1-e (116)

It can easily be shown that as T— 0, S, (0) = €B, and as T — oo, S, (0) = NEB.
Note also that as T — o, we have S1 (7) = 1/2 B. But our primary interest is
in the case analogous to the C II problem, where NE7 <« 1. This is commonly
called the "effectively optically thin' case. If we then expand the source-

function expression for small 1 and small 7, we obtain to lowest order
Sl('r)= EB(l+T+T7) , (117)

which says that over the plateau the source function rises linearly from a
surface value of €B(1 +7) to an interior value of EB(1 +7 + Tr2). For NET <« 1,
the maximum in the source function occurs at the interior edge of the hot
plateau, but for NET =1, the source function will reach its maximum near

7/2 and decline both inward and outward. In Figure 6, we plot schematically
the form of the source function and Planck function curves for plateaus that are

effectively optically thin (case 1) and effectively optically thick (case 2).
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Figure 6. Source functions for two plateau cases.

A last example, somewhat simpler than the preceding, is the case of

the radiating finite slab.

This case differs from the one just covered in that

the atmosphere does not extend below the plateau, so the total optical depth

is finite. This case applies to most of the ultraviolet emission lines in the

sun, although most of them are so optically thin that the radiative-transfer

problem is of little interest.

A few lines, like the resonance line of C III,

have optical depths of order unity, so it is this sort of line that we are con-

sidering here.

We will derive the usual differential equation (112), with the solution as

in (113a). However, if we look at the symmetry of the problem, it is

apparent that a simpler solution will be of the form

S(T):A,:er\[e'r+e'\[€ﬁ_—r):| +B ,
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where T is the total optical thickness of the slab. The usual method of solu-

tion yields the answer

1-g [NVET, NEE- )
e™VE(1 +NE) + (1 - NE)

S(t) = B<1l - s (119)

which can be shown to have the correct asymptotic properties. If we assume

TNE <« 1, we can reduce (119) to

2+-'_T'T2+TTF+'\/_€<TI'+%T'TZ)
S(t) = €B 5T NE (120)
or
s=&€B(1+37-32+177) . (121)

Thus, the source function has minima of S= €B(l +1/2 F)at r=0and 7= 7

and has a rounded maximum in the center of the slab with a value
— 1— 1.2 -
S(T/2)=EB(1+‘2‘T+§T) . (122)

These examples should be helpful in analyzing the results of the more
exact calculations in later sections. Many of the approximations derived

in this section are obeyed surprisingly well by detailed computations.

42



2. ATMOSPHERES

For the most part, we will discuss the details of various models of the
solar atmosphere in Sections 4 through 7, where we consider the individual
lines. However, it will be found useful to compare some current models
outside the context of any particular line, so we shall give here a brief sum-
mary of several of the most widely used atmospheric models. We will con-
sider only one-component atmospheres, in spite of the fact that a considerable
amount of recent work has been done interpreting line profiles in terms of
two-component atmospheres (see, for example, Beebe and Johnson, 1969;
Beebe, 1971). We believe that at present most observations do not justify
the necessity of interpreting lines in terms of two-component atmospheres.
These two-component atmospheres have been devised solely to explain the
center-to-limb behavior of the H and K lines of ionized calcium, and it
appears unlikely that some of the grossly nonhomogeneous models could
satisfactorily reproduce the observed continuum intensities in both the infrared
and the ultraviolet, in view of the linear dependence of emission upon tempera-
ture in the infrared, and the highly nonlinear relation of these two quantities
in the ultraviolet, and in view of the success of one-component models in
reproducing both infrared and ultraviolet intensities. In the Appendix, we
show that the basic features of even the calcium K line profiles can be

explained by a one-component model atmosphere.

All the models described here, with the exception of some of those
of Athay and his collaborators, are empirical models in hydrostatic equili-
brium. The temperature, pressure, physical height, and, possibly, other
parameters are tabulated as functions of some independent variable, usually
optical depth at 5000 A. Hydrostatic equilibrium is assumed, so specifying
the values of one variable such as temperature is sufficient to determine the
entire atmosphere. Radiative equilibrium is not assumed, although some-
times theoretical radiative equilibrium atmospheres are used as a guide in

deeper layers. In the models of Athay (1969), of Athay and Canfield (1970),
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and of Linsky and Avrett (1970), an artificial pressure, due to turbulent
motions, is added to the usual thermal pressure in the equation of hydro-

static equilibrium.

In this and later sections, we shall generally plot the parameters of
model atmospheres as functions of physical height. While it is undoubtedly
true that for many purposes optical depth is a more useful independent variable,
no one wavelength at which the optical depth is to be defined can be optimally
useful over the full height range of an atmosphere. As far upward as the
temperature minimum, a wavelength of 5000 A is satisfactory, but in the low
chromosphere, a wavelength at the head of the Lyman continuum is better,
since electron scattering affects X\ 5000 optical depths but does not much affect
the overall structure of the atmosphere. At temperatures high enough that
hydrogen becomes significantly ionized, both optical depth and height scales
are strongly influenced by details of the non-LTE ionization equilibrium of
hydrogen, so neither is appreciably more useful than the other. The input of
PANDORA uses height as the independent variable for all atmospheric

parameters.

One point that should be mentioned in this connection is that the transfor-
mation from optical depth to height depends on the assumed He/H ratio, which
is poorly defined by observations. The Utrecht Reference Photosphere (see
below) used a ratio of 0.20 by number, whereas the Bilderberg Continuum
Atmosphere (BCA) and almost all more recent models, and also the earlier’
model of Thomas and Athay (1961), assume 0.10. Helium acts as an inert
gas, which increases pressures, and thus can change the relation between

optical depth and physical height.

Many models have been constructed of the photosphere, or that portion
of the solar atmosphere below the temperature minimum. We might mention
the work of Minnaert (1953) and B8hm-Vitense (1954). In 1955, Athay,
Menzel, Pecker, and Thomas (1955) derived an empirical model of the solar
chromosphere, based on calibrated eclipse spectra. This material was used
again in an improved model by Thomas and Athay (1961); their derived tem-
perature distribution and electron density are shown in Figure 7 along with

two others discussed below. The lower portion of Thomas and Athay's model
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atmosphere is an observational upper bound on the temperature, and the zero
point of their height scale has been adjusted following Thomas and Gebbie
(1971). The analysis utilizes measured intensities, at a series of heights in
the chromosphere, at A 4700 and at the head of the Balmer continuum, and
hydrostatic equilibrium is assumed through the chromosphere. One can then
derive the temperature, and electron and neutral hydrogen density as a func-
tion of height. Pottasch and Thomas (1960) have also calculated theoretically
the non-LTE formation of the Lyman continuum, with a resulting model

similar to that of Thomas and Athay (1961).

A series of models of the solar atmosphere constructed explicitly in
hydrostatic equilibrium all the way from the photosphere through the tempera-
ture-minimum region to the chromosphere began with the Utrecht Reference
Photosphere (URP) (Heintze, Hubenet, and de Jager, 1964). This model had

5000 = 0.02

at a height of 200 km above T5000 = 1.0. In Figure 7, we show the tempera-

ture and electron density vs. height relations for this model. Soon after the

a temperature minimum of 4500°, located at an optical depth T

publication of the URP, it became evident that the new ultraviolet and especially
infrared data implied that the temperature minimum is at a much smaller
optical depth than 0.02. An atmosphere incorporating the new ideas was
devised at the Bilderberg Conference in April 1967 and published under the
name of the Bilderberg Continuum Atmosphere (see Gingerich and de Jager,
1968). The BCA includes a chromosphere extending up to 2210 km and to a
temperature of 9500° as opposed to 635 km and 5125° for the URP, which
gives some indication of the large amount of new data that had accumulated

in the interim. More importantly, the BCA has a very broad temperature
minimum of 4600°, extending from 295 to 440 km, corresponding to an optical-
3 to 6 X 10_4. But while the BCA had the best model

chromosphere up to that time (in fitting new infrared data), it was somewhat

depth range of 6 X 10"

cruder than necessary in its treatment of the photosphere. It does not repre-
sent the visible and near-infrared limb darkening well. A revision of the

BCA that is better in this respect was published at the same time by Elste
(1968). In Figure 7, we show also the temperature-height and electron-density-
height relations of the BCA. Elste tabulates his model as a function of optical

depth, so it cannot be readily included on this figure.
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After the BCA was published, new observations in the far infrared and
in the ultravioiet led to changes in the accepted temperature-minimum value.
For many years, it had been known that the K1 minimum of the K line has a
brightness temperature of at most 4400°, while continuum observations
implied a temperature minimum of 4600°. This discrepancy was usually
attributed to the effects of inhomogeneities on the K-line profiles. However,
the observations of Mankin and Strong (1969), Eddy, Léna, and MacQueen
(1969), and Parkinson and Reeves (1969, 1970) definitely indicated a lower
value of the temperature minimum. And on the basis of theoretical calcula-
tions, Athay (1970) showed that the boundary temperature of a non-LTE line-

blanketed solar model in radiative equilibrium will be 4330° + 150° K.

In response to these developments an atmosphere with a temperature
minimum of 4200°, called the SAO5 Atmosphere, was distributed by Gingerich
(1970). This atmosphere also corrected the deficiencies of the BCA model in
the photosphere. The SAO5 Atmosphere has a smoothly sloping temperature,
falling from 4600° at T, = 1072 to 4200° at Te000 = 10_4, with a height at
the temperature minimum of 550 km. Above the temperature minimum, the

temperature rises rather rapidly to 10, 000° and above.

Linsky and Avrett (1970) derived a model of the solar chromosphere
based on their study of the formation of the Ca II H and K lines. In their
calculations, Linsky and Avrett have included a turbulent pressure due to
microturbulent gas motions, so their model atmosphere is somewhat more

extended in height than are most other recent models.

Finally, the most recent atmosphere of this particular type is the Harvard-
Smithsonian Reference Atmosphere (HSRA) (Gingerich, Noyes, Kalkofen, and
Cuny, 1971). The HSRA differs from the SAOS5 only in the upper chromosphere.
In this region, the HSRA includes the results of non-LTE analyses of the for-
mation of the Lyman continuum (Noyes and Kalkofen, 1970). The HSRA extends
up to a temperature of 8930°, at a height of 1860 k. The total pressure at
the highest point is 0.15 dyne cm-z, which is within the usually quoted range
for the pressure at the base of the corona, 0of 0.1 to 0.2 dyne cm-z. In

Figure 8, we plot the temperature-height relation of the BCA, SAO5, Linsky
and Avrett, and HSRA atmospheres, taken partially from Gingerich et al.
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(1971). In the photosphere, the temperatures of the SAO5 and HSRA models

are indistinguishable.

It is interesting to note, as pointed out by Thomas and Gebbie (1971), that
the temperature structures of the models since the BCA have been approaching
closer and closer to the early empirical model of Thomas and Athay (1961).
Nevertheless, the chromospheric electron density of the HSRA is still a factor

of about four smaller than that of the Thomas and Athay model.

As has been pointed out several times (cf. Athay and Canfield, 1969),
the intensities in the centers of many strong solar lines could be more easily
explained if the region of formation of the line had a greater electron density
than is implied by the series of models discussed above. Athay and his
collaborators have postulated that turbulence in the solar atmosphere might
produce an additional source of pressure, besides the usual thermal pres-
sure. If we include this pressure source, it is possible to produce model
atmospheres in hydrostatic equilibrium, which have appreciably greater
densities and electron densities in the upper chromosphere than do the BCA

and its successors.

In their paper on the Na I and Mg I lines, Athay and Canfield (1969) did
not construct a detailed hydrostatic equilibrium atmosphere but merely
postulated an electron density rather larger than that given by the BCA. 1In
Figure 9, we show both the temperature and the electron densities for the
BCA and for the atmosphere of Athay and Canfield (1969). In the region
—10_l and T =10_5

5000 © 5000
total hydrogen density, but the atmosphere of Athay and Canfield has a con-

between T , the two atmospheres have the same
siderably higher electron density, greater by approximately a factor of five
over most of this region. This difference enabled Athay and Canfield to
derive theoretical line profiles that agree well with the observed profiles for

Na I and Mg I, at least for the center of the solar disk.

More recently, Athay (1969) has published two model solar atmospheres,
one of which includes a turbulent-pressure term. The theory of support of
the chromosphere by means of pressure due to turbulent motions in the atmos-
phere was first put forth by McCrea (1929) and has been considered by many

authors since that time. Athay's models include a solution of the non-LTE
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Lyman-continuum transfer problem, but the Lyman-a line in the two-level
model hydrogen atom was taken to be in radiative detailed balance. These
models are required to fit certain observational constraints, such as the inten-
sity of the Balmer continuum during eclipse, the pressure at the base of the
corona, and the Lyman continuum intensity at the solar-disk center. We show
Athay's model II, which includes turbulent pressure, in Figure 9. Once again
the electron density is everywhere higher than that of the BCA model. Note
also that Athay's model has a narrow temperature-minimum region, with a
rather higher minimum-temperature value than is assumed in the SAO5 and
HSRA atmospheres. Inclusion of a minimum temperature as low as 4200°
would reduce all Athay's electron densities. Another model, which we have
plotted as Athay and Canfield (1970), was published in connection with a study
of the resonance lines of O I. The method and constraints are essentially the

same as for Athay's model II discussed above.

It would appear that indeed some nonthermal pressure source does act in
the solar atmosphere, but Athay's models do not agree with the latest obser-
vations relevant to the temperature-minimum region, and so must be revised.
Whether deviations from spherical symmetry in the low chromosphere are
small enough that eclipse Balmer continuum emission data are useful in con-
structing average atmospheres is an unl_'esolved question at the moment.
Certainly, it is difficult to construct atmospheres satisfying the eclipse

observations.

Almost all the above model chromospheres extend not far beyond 9000°,
if that far. This is largely because the Lyman continuum is formed at an
electron temperature of approximately 8500°, and the Lyman continuum is
formed higher than any other continuum region usually used in atmosphere
construction. Conversely, most of the ultraviolet emission lines can be used
to derive models of the high-temperature regions of the solar atmosphere, but
these models only represent the observations well at temperatures of 100, 000°
and above (see Dupree and Goldberg, 1967), where the hypothesis of constant
conductive flux is valid. Between 9000 and 100,000°, radio observations are
the only useful continuum intensities, and line observations are not so easy
to interpret in this temperature range as above 100, 000° since many of the

strong lines cannot be assumed to be optically thin. Consequently, few
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quantitative models of this region of the solar atmosphere have been published.

We will review some of the relevant studies.

Thomas and Athay (1961) pointed out that we should expect one or more
temperature plateaus in the high chromosphere, with abrupt changes in tem-
perature between plateaus. These authors placed the plateau associated
with H1I emission at close to 11,000° and concluded that the He I and He II
plateaus might merge at approximately 60,000°. In general, however, their
temperature values were rather tentative, and lengthy detailed calculations,
such as those reported by Field (1965) and by Defouw (1970), are required to
obtain accurate values for the temperature plateaus. Thomas and Athay do

not propose a quantitative temperature-height relation for such plateau regions.

It now appears that the region in which the Lyman continuum is formed
should be identified with the hydrogen temperature plateau, although it might
be that separate plateaus exist, which are associated with hydrogen continuum
and line emissions. Observations imply that the Lyman-continuum formation
region breaks off with an abrupt temperature rise from 9000 to over 12, 000°
at least. Beyond this there does not seem to be any published indication of
observational evidence in favor of any other temperature plateaus. We study

this question further in later sections.

Pottasch (1964) quotes an atmosphere from 10,000 to 1,600,000° derived
from ultraviolet line intensities by Kanno and Tominaga. A value of the
product NeTe =7X 1014 was assumed, and a thickness of 17.4 km in the
temperature range 10,000 to 100,000° was derived. In Figure 10, we plot
this model along with two others mentioned below. We have multiplied the
heights by a correction factor to take into account the different electron pres-
sure from that adopted by Athay (1966), who chose N, T, = 6 X 1014. Athay
(1966) made a very careful analysis of the ultraviolet line emission and
derived a model from which we have plotted in Figure 10 a curve based on his
~two lowest points. We have also plotted a curve based on the highest few
points of the atmosphere tabulated by Athay and Canfield (1970), based on
their study of the O I ultraviolet resonance lines. These atmospheres, which
we have plotted, show no evidence of any temperature plateau and give only
an order-of-magnitude idea of the physical thickness of the solar atmosphere

between 10, 000 and 100, 000°. We can probably do no better than this without
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performing detailed calculations for individual lines, taking into account

radiative-transfer effects and density-dependent ionization equilibrium effects.

This fact is apparent from an inspection of Athay's (1966) Figure 3 and of

Dupree and Goldberg's (1967) Figure 3, where for temperatures around

60,000°, we find points differing from one another by almost two orders of

magnitude.
107~-096
T 1 T T T T
100000+ N
80000+ 7]
60000} I
40000 I
Te
20000 T
.
0000 |~ \‘\-\ 7
KANNO AND TOMINAGA
— — — ATHAY (1966)
—.—.— ATHAY AND CANFIELD (I1970)
] n | | l |
0 0 20 30 40 50 60

HEIGHT (km) (zero points are different)

Figure 10. Models of the upper chromosphere.
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In our final few sections, we study in detail several lines formed com-
pletely or partially in the temperature region 10,000 to 100,000°. In view of
the problems mentioned in connection with the methods of Athay and of Dupree
and Goldberg, we may not be justified in making firm conclusions based on
the lines of only two or three ions. A completely satisfactory study should
treat about four stages of ionization of at least three ions and would be very

time-consuming. In this work, we make a start in this direction.
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3. ATOMIC PARAMETERS

In the sections dealing with individual lines, we will present most of the
data on atoms and ions, but it will be advantageous to outline here some
basic points. We will discuss the way in which the various atomic quantities
are input into PANDORA as well as some general formulas and large tabula-

tions of data, which are useful in relation to many atomic species.

3.1 Abundances

First, let us consider the question of the elemental abundances to be
used. We have in each case used the photospheric abundances of Goldberg,
Muller, and Aller (1960). These abundances have been changed only by small
amounts by more recent work, except for the case of iron. Since we do not
discuss any iron lines, we can reasonably use GMA abundances for all our
lines. There has been some uncertainty as to whether photospheric,
chromospheric, and coronal abundances are truly identical for all elements
or whether significant variations exist for some elements; but no definite
evidence of abundance variations exists hitherto, so we have used photospheric
abundances in analyzing lines that are formed in the chromosphere or
chromosphere-corona transition region. In PANDORA, we specify the abun-

dances relative to the total hydrogen density, as is conventional.

3.2 Radiative Bound-Bound Rates

Our radiative transition rates have been obtained from a number of differ-
ent sources, both experimental and theoretical. In general, experimental
values have been preferred over theoretical ones. For Mg II, we adopted
values from Corliss and Bozman (1962), who used a wall-stabilized arc in their
A-value determinations. For OI and C II, there are available experimental
A-value determinations by the phase-shift method, by Parkes, Keyser, and
Kaufman (1967) for O I and by Lawrence and Savage (1966) for C II. This
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method offers the possibility of great accuracy in A-value determinations in
comparison with other methods using arcs, furnaces, or shock tubes. We
found the National Bureau of Standards compilations of theoretical results
by Wiese, Smith, and Glennon (1966) and by Wiese, Smith, and Miles (1969)
useful for comparison with experimental results in the above cases. For
the case of C IIl, since we could find no experimental work, we have used
the A values given by Wiese et al. (1966) for the two strong lines, and that

computed by Garstang and Shamey (1967) for the intercombination line.

3.3 Radiative Bound-Free Rates

A few of the bound-free continuum cross sections have been measured
experimentally, but usually we must use theoretical results. One useful list
of cross sections is that of Henry (1970), who used Hartree-Fock wavefunctions
for the ground configuration states and close-coupled wavefunctions for the
continuum states of several abundant atoms and ions. We employed his data
for the carbon ion continua, as discussed in Sections 6 and 7. In several other
cases, we have used cross sections derived by using the general formula based
on the quantum defect method of Burgess and Seaton (1960) as revised by
Peach (1967). For situations where the phase factors appearing in the formulas
of the quantum defect method are not close to zero, the accuracy of this

method should be within approximately a factor of two.

PANDORA allows a variety of forms in which we can specify the photo-
ionization rates in each continuum. If we know in advance the numerical
values of the photoionization rate and photorecombination rate in a given con-
tinuum at each depth point in the atmosphere, we can input these rates
explicitly. Alternatively, we can specify the photoionization cross section
at one or more frequency points in the continuum. PANDORA will intérpolate
linearly to determine the cross section between frequency points up to the
last, highest frequency point, and from this point on a v_3 frequency depen-
dence of the cross section is assumed. Then we must determine the radiation

field in the continuum. Once again we have two alternatives: We can specify
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a ""'radiation temperature' for each photoionization continuum at each depth
point in the atmosphere, in which case, a blackbody radiation field is assumed
and the integration of intensity times cross section over frequency is per-
formed automatically; or, if we so desire, PANDORA will internally compute
the radiation field at each of the specified frequency points for each depth in
the atmosphere. In so doing, the radiative-transfer equation must be solved
for each frequency point, since we include pure scattering by electrons and
Rayleigh scattering, pure absorption in LTE by the important metals, and
non-LTE absorption by hydrogen and by certain metals (e.g., neutral carbon).
For the computation of the non-LTE continuum opacity due to hydrogen, we
must in general input the densities at each depth point of neutral hydrogen,
protons, electrons, and of neutral hydrogen in the n=2 level, plus possibly
other higher levels. After computing the radiation field at each frequency
point, the integration of intensity times cross section is performed as before,
with the assumption that the radiation temperature remains constant between

the highest specified frequency point and infinite frequency.

Depending on the individual situations, we use all these various input
possibilities. Internal computation of intensities requires a considerable
amount of computer tifne, and beyond the Lyman continuum, that is, short-
ward of approximately X\ 500, the opacity sources that are taken into account
are insufficient (as of this writing the He I opacity has not been added). In
some cases, we can perform the photoionization computations once and input
the rates explicitly for other cases with the same atom and only slightly
different atmospheres. For continua that fall at short wavelengths, we simply
specify the radiation temperatures, based on published data on ultraviolet

intensities.

3.4 Collisional Bound-Bound Rates

Probably the most uncertain, and often the most important, atomic param-
eters are the collisional bound-bound rates, or equivalently, the collisional
excitation cross sections. Experimental results relevant to these cross sec-

tions are rare, so we are generally forced to use theoretical calculations,
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or even approximate general formulas. For allowed transitions, Van
Regemorter (1962) has derived a general formula for the calculation of approxi-
mate collisional transition rates. He expresses the deexcitation rate from

level j to level i as

3 -1/2 Eij
C..=20.6\°N_ T A, Pl ) | (123)
ji e e ji kTe

with \ expressed in centimeters. The quantity P (Eij/kTe) is a tabulated
function, equal to the averaged Gaunt factor E used by Seaton (1964). The

corresponding excitation rate is

-1/2 Eij Eij
Cij =13.7 X\ Ne Te fij P kTe exp -kTe . (124)

This formula must be used with care, however. Blaha (1968, 1969) has
found that for highly ionized ions the Gaunt factors are 0.4 to 0.6 or even
higher, rather than the value of 0.2 given by Van Regemorter's table of
P(Eij/kTe)’ In addition, for neutral atoms at large values of Eij/kTe’
Van Regemorter's formula gives rates that are extremely low — probably

unrealistically so. We discuss this point in the section on O I

For purposes of comparison with the results of other workers, such as
Athay and Canfield (1969, 1970), we would like to know how to convert from
excitation cross sections, taken as constant above threshold, to rates given

by equation (124). To do this, we express the excitation rate as

[o¢]

2
Cij = j Qij ™ag Ng(v) vdv (125)

vV=EvV__ .
min

where Qij is the excitation cross section in units of the Bohr cross section.
We equate expressions (124) and (125), using the known Maxwellian distribu-

tion of electron velocities, to obtain
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In PANDORA, collisional excitation rates are expressed in terms of a param-

11 (126)

Q..=2.51 %10
1]

eter CEij’ by the formula (for excitation)

E..
_ __ij
C.1j = CEij(Te) Ne exp( kTe> . (127)

For each transition, we input a table of values of CE, corresponding to a
preset table of temperatures. Subsequently, at each atmosphere point

PANDORA linearly interpolates in the table of CE values to derive a value

for the temperature at that atmosphere point.

To convert between cross sections expressed in terms of Qij’ the CEiJ.‘s

and equation (124), we can use

1. i ) i i € kT
L. = . ; “—J-kT f.. I . ( 9)

If we input negative CE's, PANDORA will insert the number density of
neutral hydrogen, rather than the electron density, in equation (127). This
is usually useful for fine-structure transitions in ions that produce lines
formed in the photosphere and the low chromosphere. For cases where exci-
tation by electrons, hydrogen atoms, and protons are all important in different
parts of the atmosphere, we compute the rates in advance and then adjust
the CEij(Te) table to yield the correct rates, using either n, Or Ny, asa factor.
Several calculations of individual collisional cross sections have been

published and are discussed in later sections. Bahcall and Wolf (1968) have
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published a rather extensive treatment of fine-structure transitions, which
includes general methods of computing rates for excitation by protons and

hydrogen-atom collisions.

3.5 Collisional Ionization Rates

Collisional ionization rates are important in determining the ionization
equilibria for atoms and ions of interest. Experimental measurements of
collisional ionization cross sections are rare, and detailed calculations for
individual ions have been done for very few cases. On the other hand, it is
sometimes claimed that general formulas are more accurate for collisional
ionization rates than for any other atomic process and that an error of a
factor of two is unlikely. We have used extensively the formula of House

(1964), based on work of Allen (1961):

1/2
T N X
_ -8 1.2 _0.9\51Te Te _Xg
Cy g = 1-15%10 <3.1 2) > exp<——kT >
J ZJ XJ e

(130)

where

XJ = ionization potential in ev,
C'J = number of electrons in the outer shell, and

ZJ= ionic charge after ionization.

The input of PANDORA for collisional ionization rates is similar
to that for collisional excitation. The rates are expressed in terms of a

parameter CIJK(Te)’ according to

CJK = CIJ‘K (Te) Ne exp <————kTe> , (131)

The CI's are tabulated for a preset list of temperatures, and, unlike the case

for excitation, only positive CI's, corresponding to ionization by electron

collision, are allowed.
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3.6 Broadening Constants

The absorption profile of a line subject to Doppler broadening as well

as to radiative, Stark, and Van der Waals damping is given by the previously

mentioned Voigt profile:

400 -zZ
_a(7) e dz
¢, (1) = 3/2 (Av) x|2 ’
T - [a('r)]2 tlz -2 —
AvD(T)
where
% = Ay _ AN
<AvDoppler> <A)\Doppler>
and
Q= AvDarnping(’r) - A)\DampinJg(T)
AVDoppler('T) A>\Doppler(-r)

The Doppler width is given by

2 kT
e+g2
M 2

ol

where

M is the mass of the atom or ion, and

¢ is the microturbulent velocity.

The damping is

A)\Darnping = A)\Radiative * A)\Stark * A)\Van der Waals
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The radiative damping depends only on the sum of the Einstein A values for

downward transitions from the two levels of the line. We have

A\pad  “2YRad _zaA (136)
A - v T 4nvy
or
A A
ANRad = dmc (137)

Stark broadening is caused by collisions with electrons and will vary with

depth in the atmosphere. In PANDORA, we use the expression

Ne ad
Ahgiark = AN <—T2"> ’ (138)

For each line, we specify A)\O and the value of q (usually 1.0) to be used in
the calculation. In most cases, the Stark broadening widths were available in
the tables of Griem (1964). We chose A)\o for an '""average'' temperature of
formation of each of our lines and thereafter neglected the temperature depen-

dence of A)\O. This is a reasonable approximation since A\, is not strongly

0
dependent on Te and since Stark broadening is not the dominant broadening

mechanism for any of our lines at any point.

The Van der Waals broadening is also treated by Griem (1964). The

damping is proportionalto N_..; we will compute A)\vdw for a standard value

16 -3 HI
of 107" cm ~. Griem gives (1964, p. 100)
— \2/5
5,2
9nrh” R —2/5 5713
_ a 3/5 _ -13 2 375
Avvdw" TI'NHI v =5.10x10 NHI Ro. v ,
16 m_ E
(139)
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where

— E z? E
i:%ﬁi—a 5E_°o——_"r:%+1‘”a“a+” , (140)

where

EH = the ionization potential of hydrogen,

Eoo = the ionization potential of the atom of interest,

E(1 = the excitation potential of the upper level of the line in question,

la = the orbital quantum number of the upper level of the line in

question,

y4 = the effective charge of the atom (Z = 1 for a neutral atom),
and

v = the thermal velocity of the perturbing hydrogen atoms, and

Ep = the excitation energy of the resonance line of the perturbing

atom (Ep = 10.2 ev in the case of hydrogen, considered here).

As for Stark broadening, we evaluate A)\vdw at some ''average' temperature
and thereafter neglect the temperature dependence but not the density depen-

dence.

In our initial calculations for each line, we used broadening constants
given by the above formulas, but for some lines it was necessary to use
different damping constants in order to fit the observed line wings. We
generally adjusted the Van der Waals broadening constant, since this is
usually the dominant source of broadening, and the theory of Van der Waals
broadening is not very highly developed, so that the values given by equation

(139) are at best only approximations.
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4. THE MAGNESIUM II H AND K LINES

4.1 Introduction

The H and K lines of Mg II, which occur at A\2795 and \ 2802, are very
similar in many ways to the H and K lines of Ca II, which we discuss in the
Appendix. Hence, much of the work done on the Ca II lines is applicable in
some degree to the Mg II lines as well. Several workers have studied the
formation of the Mg II H and K lines, including most notably Dumont (1967a, b)
and Athay and Skumanich (1968a). Since these workers have treated the
subject in considerable detail, we do not intend to repeat very much of their

work here. We plan to investigate only three points:

1. The computed Mg II H and K profiles that arise from calculations
using the Harvard-Smithsonian Reference Atmosphere (Gingerich et al.,
1971).

2. The effects, if any, of a chromospheric temperature plateau, such

as we discuss in Sections 5 and 6, upon the Mg II line profiles.

3. The effects upon the line profiles of a steeply rising microturbulent
velocity near 1500 km, similar to that considered in Sections 5 and 6 and

in the Appendix.

The primary discrepancy between the observed and computed line profiles,
as found by Dumont and by Athay and Skumanich, is that computed profiles tend
to have central intensities considerably lower than observed. In Figures 11
and 12, we reproduce the comparison between observation and theory for an
example by Dumont (1967b, Figure 18) and an example by Athay and Skumanich
(1968a, model 3). Model 5 of Athay and Skumanich shows a somewhat higher
central intensity than does their model 3, but the atmosphere of model 5 has
an extremely rapid chromospheric temperature rise. The relatively good fit
of the computed profile of Athay and Skumanich is partly due to the fact that
the computed profiles have been matched to the observations at the K

and at AN =1 A.

5 peak
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Figure 11. Computed and observed magnesium II K line profiles from Dumont

(1967b).
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Figure 12. Computed and observed magnesium II K line profiles from Athay
and Skumanich (1968a).
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4.2 Observations

The profiles of the Mg II H and K lines used by Dumont were observed
by Purcell, Garrett, and Tousey (unpublished) and reduced by Goldberg
(1965). This K line profile is shown in Figures 11 and 12. The profile is an
average over the whole solar disk, which led Athay and Skumanich to conclude
that it is probably affected by active regions and therefore does not represent
very accurately the profile of quiet regions of the solar disk. However,
more recently, Lemaire (1969) has obtained stigmatic spectra of the Mg II
doublet, which allow us to distinguish between active and quiet regions. The
profile in a quiet region near the center of the solar disk would appear to
resemble quite closely that of Goldberg (1965). Lemaire has also given a
profile from a quiet region near the solar limb, but uncertainties due to
instrumental transmission variations and to stray light make an accurate
comparison between limb and disk-center profiles difficult. We have attempted
an absolute calibration of Lemaire's profiles, based on Goldberg's calibration,
which we plot in Figure 13. In this reduction we have averaged the red and
blue wings of the line. We estimate the value of p for Lemaire's limb pro-

files to be 0. 30.

4.3 Atomic Parameters

For the sake of simplicity, and because it should not greatly influence any
of the effects that we wish to investigate, we have chosen to use a three-level
model atom, as shown in Figure 14. We compute the formation of both the
H and the K lines but shall discuss primarily the K line, the stronger of the

two.

In Table 1, we have tabulated the various transition rates and line broad-
ening constants. We have defined the rates in terms of the CE's, CI's, CRD's,
and CVW's mentioned in Section 3. These quantities are tabulated for a tem-
perature of 5000°, and they vary slowly with temperature. The exact tem-
perature variation is taken into account in our calculations. We have put the
level numbers in parentheses after the spectroscopic designations. In the
table itself, we have used the convention of putting exponents in parentheses.

We used a log abundance of 6.40, as found by Goldberg et al. (1960).
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Figure 13. Magnesium II K line profiles observed by Lemaire (1'96 9). Units
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Figure 14. Three-level Mg II model atom.

The A values were taken from the compilation by Wiese et al. (1969).
These values agree well with the experimental results of Corliss and Bozman
(1962). The damping constants were calculated by using the formulas that we

have developed in Section 3.

The collisional rate CE 3-2, between the fine-structure levels, was cal-
culated by using the approximations of Bahcall and Wolf (1968). We included
collisions with electrons, protons, and neutral hydrogen atoms. For electron
collisions, we used an estimated collision strength of 1.0. We find that
hydrogen-atom collisions dominate below 7000°, while above this point proton
collisions are the most important. Electron collisions are about one-quarter

as important as proton collisions.
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We considered the possibility that transitions between the two 2P fine -
structure levels might occur as rapidly via indirect two-step processes as
by direct collisions. After doing the calculations reported as case 4 in the
following section, we compared the rates for two different processes for two

different heights in the atmosphere. Direct collisional rates between the

2P1/2 and 2P3/2 levels at heights of 1050 and 1800 km were 2.79 X 109 and

7.05 x10° cm~3 sec 1, respectively. These heights mark the maxima in
the source functions and the point at which the K line opacity equals unity.

The dominant path for transitions between the 2'P fine-structure levels via

2D is absorption from one 2P level to 2D3/2, followed by decay into the other

2P level. This rate is restricted by the weak D3/2 - 2P3/2 line, which has
an A value of 7.83 X 107, so the total rate for transitions 2P3/2 — 2P1 /2 is
given by n(2D3/2) X A(ZD:,)/2 — 2P3/2). In order to evaluate this rate, we
made a computation similar to case 4 below, in which we included only the
level, with the two lines join-
3/2 5 2 2

ing these levels. The values calculated for n("D ) vield "P - P

7 4 T3 ) 3/2 3/2 1/2
rates of 8.4 X 10 and 8.3 X 10 cm sec at 1050 and 1800 km. A com-

parison with the direct rates shows that this process is smaller by a factor

ground state, the ZPI/2 level, and the 2D

10 to 30 than direct collisions and does not contribute significantly toward

the total 2P 2

3/2 - P ra.te.

1/2
The choice of photoionization cross sections proved to be somewhat
difficult. The general formula of Burgess and Seaton (1960) yields values of
a=1.36x% 10-19 cn:12 and a = 4.32 X 10-19 crn2 at the heads of the 2S and 2P
ionization continua, respectively, while the formula for photorecombination
rates quoted by House (1964), which is derived from the general formula for

photoionization cross sections of Elwert (1952), yields values of
a=1.71X 10—17 crn2 anda = 2.35 X 10-17 cmz, approximately 100 times as

large.

We have chosen to use the larger values from House's formula, and we
therefore compute ionization equilibria for Mg II/Mg III similar to those com-
puted by House (1964) and by Jordan (1969). According to Jordan, dielectronic
recombination from Mg III to Mg II is not very important, so House's and
Jordan's calculations agree quite closely. If we were to use the lower photo-

ionization cross sections, we would find a considerably higher Mg III/Mg II
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ratio in the upper chromosphere than we actually do compute, but it is doubtful
whether any of our results would be significantly different. Some calculations
using the lower photoionization cross sections of Burgess and Seaton show

changes of less than 15% at line center, and smaller changes elsewhere.

4.4 Results

We shall discuss the points raised in Section 4.1 and present line profiles
for the various cases. Four different cases were necessary in order to resolve

the associated questions.

Case 1. A run was made with an atmosphere similar to the Harvard-
Smithsonian Reference Atmosphere (HSRA), except that a temperature plateau
of temperature 18,500 K, width 50 km, and electron density 3.15 X 1010 has
been added on top of the steep temperature rise above 10,000 K. This atmos-
phere is shown in Figure 26, where the Te curve is labeled (HSRA). The
microturbulent velocity was assumed to rise gradually to a value of 5 km sec™?!
at a height of 1150 km, and above this point was taken as constant at 5 km sec_l.

In Figure 15 we show this microturbulent velocity variation.
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Figure 15. Microturbulent velocities for Mg II calculations.
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The line profile for the K iine at . = 1.0 is shown in Figure 16, in com-
parison with the observation of Lemaire; the profiles for p = 0.3 are shown
in Figure 17. Although the total amount of emission, at least for p =1.0,
in the computed line is approximately equal to that observed, the computed
peak intensity is considerably too great, while the computed central intensity
is too small. This problem is discussed under case 2, below. The peak
intensity is calculated to be 8. 66 X 10—7, while the peak in the source function
is 1.18 X 10_6, which occurs at 1100 km, where Te = 5900° and the line-

center optical depth = 1.8 X 103.

With reference to point 2 mentioned in Section 4.1, we find that the
chromospheric temperature plateau has a negligible effect upon the Mg II
lines. Although we find that 0.5 of the Mg in the plateau region is singly
ionized, the source function does not rise significantly above that at lower
heights, so no effect of the plateau is observed. The Mg II lines at X\ 2800
are affected by the plateau far less than are the O I and C 1I lines near A 1300,
primarily because the Planck function is a much weaker function of tempera-

ture at the longer wavelength.

The lack of effect of the plateau and the fact that the peak in the source
function occurs so deep in the atmosphere are the two primary reasons why
the exact photoionization cross sections are not critical in determining the

main features of the formation of the Mg II H and K lines.

Case 2. A second run was made with the same atmosphere as for case 1,
except that a rapid increase in microturbulent velocity near 1650 km was
assumed. In Figure 15, we show this velocity variation. Note that in this
case, the rapid increase in v occurs at a height almost 100 km greater than
shown for O I in Figure 28 (case 9). The heights of the increases in v depend
on the optical depth scales in the lines, so any change in our adopted abundances,
A values, or ionization equilibria might resolve this difference. Alternatively,
the difference might indicate that the true situation is far more complex than
can be dealt with in our model and that height-dependent isotropic microtur-

bulence is an oversimplification.

The line profiles for the K line at p = 1.00 and u = 0. 30 for this case are
plotted in Figure 16 and Figure 17. The central intensity and intensity at
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Figure 16. Observed and computed profiles for Mg II K at p=1.0
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AN = 0.6 A are very similar to case 1, but the intensity in the peak region is
much reduced, to the extent that at p = 1.0 the computed peak intensity is
smaller than that observed. The peak occurs at A\ = 0.24 .&, rather than at
0.14 A as is observed, and the intensity for AA = 0.6 Ais considerably
greater than the observations imply. None of our calculations yields an inten-
sity for AX = 0.6 A as low as the observations imply; this is due to the fact
that the radiation temperature of the observed intensity is only 3900°, while

the HSRA model atmosphere has a temperature minimum of 4170°.

Case 3. This case is identical to case 2, except that we have increased
the assumed temperature of the atmosphere near 1200 km, as shown by the
higher Te curve in Figure 26. The general features of the line profiles are
similar to those for case 2, but the intensities are greater by approximately

a factor of two, and therefore the peak intensity exceeds that observed.

Case 4. In an effort to determine the importance of the line broadening,
we experimented with several calculations wherein we set the Van der Waals
and Stark broadening equal to zero and adjusted the radiative damping half-
widths. For half-widths of 10_5 .2&, we computed the profiles plotted as case 4,
with the same temperature-height relation as for case 3. At p =1.00, case 4
would appear to show better agreement with the observations than do any of

our other cases.

In order to show the effects of a steep microturbulent velocity gradient
upon the contribution function for the emergent intensity, we have plotted in
Figure 18 the contribution function for AX = 0.3 A in the K line at p=1.0as
a function of line-center optical depth. The microturbulent velocity increase
causes the contribution function to divide into two peaks, with a deep minimum
between. For the case plotted, the optical depth of the first peak at AX = 0.3 A
is 0.205. If we were to consider smaller values of A\, we would find the first
peak increasing in height and optical depth with the height of the second peak
diminishing, and conversely for larger values of AN. As a result, there is
no value of AN for which the region 1.1 < log TS 2.5 contributés significantly

to the emergent intensity. And one cannot really speak of a ''depth where the
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emission peaks are formed, ' since it is precisely at wavelengths near the

emission peaks that the most complete split into two contributing regions

occurs.
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4.5 General Remarks

Our cases 2, 3, and 4 show poorer agreement for the peak intensity value
of AN than do the calculations of Dumont, Athay, and Skumanich or of our case 1;
on the other hand, the qualitative appearances of the line profiles, especially
for case 4, are very similar to the observed profiles. The rapid increase
in microturbulent velocity has little tendency to increase the computed central

intensities, but the peak intensities can be considerably reduced. At p=0.3,

7



none of our calculated cases shows good agreement with the observations;
possibly an analysis similar to that which we do for the Ca II K line in the
Appendix would solve this problem. However, since the calibration of the

limb-profile observations is very questionable, one should not base any con-

clusions on these profiles for the present.
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5. THE OXYGEN I RESONANCE LINES

5.1 Comment on Ultraviolet Emission Lines

We wished to study some lines formed in the upper chromosphere and
the chromosphere—corona transition region. After some investigation, it
was decided to study in detail the resonance triplet of O I near X\ 1304, the
resonance doublet of C II near X1335, and the two strong lines of C III, which

occur at AN977 and A1176. These lines were chosen for several reasons:

1. As we conclude in Sections 5 to 7, the temperatures at which these
lines are primarily formed are quite distinctly separated. We find the O 1
lines are formed mostly near 7000°, the C II lines at about 18,000°, and the
C III lines at 60,000°, so we can study a wide range of regions of the solar

atmosphere.

2. All these lines fall within the wavelength range observed by the OSO 4
satellite, so we can obtain limb-brightening curves for these lines and

use photoelectric line intensities.

3. The OIand C II lines have large optical thicknesses (> 100), so that
their analysis uses the capabilities of the PANDORA program. The C III
X977 line is one of the most optically thick lines formed in its temperature
region; it might contain information that cannot be obtained from optically
thin lines. Also, we wished to compare our more elaborate analysis of this

line with that of Withbroe (1970a).

4., Profiles of the C II lines X 1334 and X 1336 and of the O I lines \ 1302,
A 1304, and A 1306 have been observed by means of rockets (see Berger,

Bruner, and Stevens, 1970; Bruner, Jones, Rense, and Thomas, 1970).

5.2 The O1I Lines — Introduction

The three lines of O I, at A1302.17, N\ 1304.87, and A 1306. 03, are very

prominent in emission in the solar ultraviolet spectrum. These lines arise
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01 2 levels and the 3S excited level.

Figure 19b is an energy-level diagram for the six levels that were considered

to be most important in the formation of the X 1302, X 1304, and A1306

from transitions between the ground 3P

resonance triplet (Moore, 1949). In order to use a minimum of computer
time, some of our preliminary calculations were made using a simplified
model atom, which includes only one radiative transition. The energy-level
diagram for this model is shown in Figure 19a. On Figures 19a and 19b, we
indicate by solid lines those transitions for which both radiative and collisional
processes are included and by dashed lines those for which only collisions

are important.

The O I resonance triplet has been observed with a high-resolution
spectrograph carried in a rocket, as reported by Bruner and Rense (1969)
and Bruner et al. (1970). These authors corrected the observed line pro-
files for absorption by atomic oxygen in the earth's atmosphere and found
some uncertainty in the resulting profiles, due to the lack of precision in
the model of terrestrial residual oxygen, which must be assumed in the
correction process. For two different models of the earth's upper atmos-
phere, Bruner et al. (1970) derived emission lines with rounded peaks and
no central absorption, and emission lines with a distinct central absorption,
giving a central intensity of order 90% of the maximum intensity. This
uncertainty should be resolved by profiles observed from satellites. The
full width at half maximum for the lines was found to be approximately
0.2 A, and the distance between the emission peaks, if these peaks in fact

exist, was found to be 0.11 A.

The profiles published by Bruner and Rense (1969), which indicated
definite central absorption, were used as a basis for a theoretical study of
the O I lines by Athay and Canfield (1970). Athay and Canfield could explain
quite naturally what they took for the observed total intensities of the O I lines,
but their computed line profiles show a large degree of central absorption,
which is not observed. The model atmosphere chosen by Athay and Canfield
rises gradually from the temperature minimum to about 9000° and then rises

very rapidly, within less than 50 km, to temperatures above 30,000°. This
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model is very different from the sort of model considered in Section 6

below, wherein a 'temperature plateau' extending over about 100 km is found
to exist at a temperature between 15,000 and 18,000°. We wished to deter-
mine whether a model atmosphere with such a temperature plateau would
imply a smaller degree of central absorption than was found by Athay and

Canfield.

Other observed quantities are the line intensities and the limb-brightening
behavior. The published observations of the three O I resonance line intensi-
ties are few and somewhat incomplete. Pottasch (1964) quotes an NRL result
that yields intensities for the A 1302, )\1304, and A\ 1306 lines of 190, 295, and
365 ergs crn_2 sec_l ster-l, respectively. This would imply that the line
with the largest A value, N 1302, is the weakest of the three, which might
seem unlikely, and yet some of our best computations yield a similar result
(see cases 5 and 6 below). In the plate published by Bruner and Rense (1969),
the lines A 1302.17 and A 1306.04 have been mislabeled for one another, which
can be seen by comparing the spacings and wavelengths, since the dispersion
is linear. Therefore, the A1302.17 line appears to be definitely weaker than
the other two, or at least its intensity in the observed maxima is lower.
Dupree and Reeves (1971) list an intensity of 398 ergs cm_2 sec s1:er_1 at
the solar center for 1302, and 718 for the sum of the A 1304 and A 1306 lines,
with an absolute accuracy of at least within a factor two. There are two fac-
tors that would tend to make the actual O I line intensities smaller than those
tabulated by Dupree and Reeves, but neither should change their results by
more than a few percent. First, the OSO 4 spectrometer had a bandpass of
3 Z\, so the tabulated intensities include a certain amount of continuum radia-
tion besides the lines. But the continuum intensity is only about 2% that of
the lines, so this effect should be small. Second, there is a line of Si II,

N\ 1304. 37, that falls within the O I triplet. This Si II line is, however, so
weak that it barely appears at the limits of detection on the spectrogram
published by Bruner and Rense (1969), while the O I lines are well exposed.
So we will use Dupree and Reeves' values as published. Dupree and Reeves'
result would indicate that the A 1302 line is by a small margin the strongest
of the three. At any rate, it seems clear that the intensities are not in the
ratio of the A values, which we might expect for an optically thin emitting
region. Optically thin conditions would give an intensity ratio of 5:3:1 for

the three lines, N 1302: A1304: \1306. Apparently, Athay and Canfield (1970)
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made an arithmetic error of a factor of four in converting from flux at the
earth's orbit to intensity at the sun, as they derive intensities of 37 for each
of the lines. The correct factor, for a line with a flat limb-brightening

behavior, is

I(p=1

Fo

=1.47 x 107, (141)

so that the flux of 0.01 adopted by Athay and Canfield should correspond to

an intensity of 147.

The limb brightening, involving a relative rather than an absolute measure-
ment, is somewhat easier to determine. Using the data from the OSO 4 satel-
lite (Reeves and Parkinson, 1970a), we have constructed an average limb-
brightening curve for the combined flux from the X 1304 and A 1306 lines, in
the way described by Withbroe (1970b). All data points lying between solar
latitudes £10° were used, except for a few that were rejected after a visual
inspection. The rejected points are portions of active regions that extend
into the equatorial region. This limb-brightening curve is shown in Figure 20,
along with that computed for case 9, below. The peak of the limb-brightening
curve appears to fall near I(u)/I(n=0) = 1.15, except for one point of rather
low weight, which is near 1. 30. The best value probably falls between 1. 15
and 1.20.

5.3 Atomic Constants

We denote the levels of our model atoms by a level number, shown on
Figures 19a and 19b. In Tables 2 and 3, we tabulate the various adopted
atomic constants for the two models. We shall proceed to discuss the sources

of data and the notations used in these tables.

The level designations, energies, and statistical weights were taken
from Moore (1949). The photoionization cross sections from the 3P, lD,
and lS states were derived from the calculations reported by Henry (1970),
while the photoionization cross section from the 3S state was computed by
using the tables of Peach (1967). We tabulate the cross sections at the head

of the continua, and in Figure 2] we display the wavelength dependence of the
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Table 2. Constants for the six-level model atom.
Level number
1 2 3 4 5 6
Designation 2pt 31:>2 2p? 313l 2p? ’P, 2pt Ip 2ptls  2p33s 3s°
Energy (cm ™)) 0 158 226 15867 33792 76795
Statistical weight 5 3 1 5 1 3
Photoionization 2.94 (-18) 2.94 (-18) 2.94 (-18) 4.64 (-18) 7.65 (-18) 1.12 (-20)
cross section
Collisional 2.22 (-8) 2.22 (-8) 2.22 (-8) 3.03 (-8) 4.63 (-8) 6.32 (-8)
.ionization
parameter
(8000°)
Transition
6-1 6-2 6-3
Wavelength 1302.17 A 1304.87 A 1306.03 A
A value 2.10 (+8) 1.26 (+8) 4.20 (+7)
Radiative damping 1.50 (-5) 1.50 (-5) 1.50 (-5)
Stark damping (N_=10'?) 7.0 (-8) 7.0 (-8) 7.0 (-8)
(T =8000°)
Van der Waals (Nyp=10'%) 5.0 (-5 5.0 (-5 5.0 (-5
damping (Te=8000°)
Collisional-rate 7.25 (-8) 7.25 (-8) 7.25 (-8)
parameter (T = 8000°
for Q=1)

Transition

Collisional-rate
parameter (at 8000°)

2-1
2-1
2-1

(electrons)
(protons)
(H atoms)
(electrons)
(protons)
(H atoms)
(electrons)
(protons)

(H atoms)

.63 (-9)
-89 (-10)
-89 (-10)
-89 (-10)
.82 (-9)
.82 (-9)
.82 (-9)
negligible
1.10 (-8)
1.50 (-9)
negligible
1.10 (-8)
1.50 (-9)
negligible
1.10 (-8)
1.50 (-9)

NN NN N
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Table 3. Constants for the five-level model atom.

Level number

1 2 3 4 5 Continuum
o
Designation 2[:)4 3P2 Zp4 3P0 1 2p4 1D Zp4 lS 2p33s 3S 2pZ 450
Energy (cm’!) 0 175 15867 33792 76795 109837
Statistical weight 5 4 5 1 3 4

Photoionization 2.94 (-18) 2.94 (-18) 4.64 (-18) 7.65 (-18) 1.12 (-20)
cross section

Collisional 2.22 (-8) 2.22 (-8) 3.03 (-8) “4.63 (-8) 6.32 (-8)
ionization
parameter

(8000°)

Transition

5-1
Wavelength 1302.17 A
A value 1.375 (+8)
Radiative damping 1.50 (-5)
Stark damping (Ng= 1012) 7.0 (-8)
(T,=8000°)
Van der Waals  (Nyg=1018) 5.01 (-5)
damping (T,=8000°)
Collisional-rate 7.25 (-8)
parameter (T = 8000°
for Q=1)
Collisional-rate
Transition parameter (at 8000°)
-3 1.63 (-9)
- 2.89 (-10)
4-1 2.89 (-10)
- 2.82 (-9)
3-1 2.82 (-9)
2-1 (electrons) negligible
2-1 (protons) 1.10 (-8)
2-1 (H atoms) 1.50 (-9)
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various continua. The detailed wavelength behavior of the photoionization
cross sections was used in our computations. The collisional ionization
rates were calculated according to the formula of House (1964). We tabulate
the parameter C I defined in equation (131) for each transition at 8000°. Here

also the exact temperature variation of C I was used.

The A value was derived from the experimental result of Parkes
et al. (1967), who found f = 0.021 + 0.003 for each of the three lines of
the oxygen resonance triplet. The three damping parameters were calculated
from the work of Griem (1964) and are expressed as (half) half-widths in
angstroms. The collisional rates for the transitions between the terms 3P,
lD, and 1S were adopted from the calculations of Henry and Williams (1968).
Again we tabulate the parameters CE at 8000° but use the exact temperature

variation.

3p

For collisional transitions between the fine-structure levels of the
ground state, Bahcall and Wolf (1968) found that electron collisions are
unimportant in comparison with proton and neutral-hydrogen atom collisions.
Since AE < kT, we have used their high-temperature approximations for fine-
structure transitions induced by protons and by hydrogen atoms. According
to the calculations of Dalgarno and Degges (1968), the electron collision rates
are not negligible but are comparable to the proton collision rates. In any
case, the rates are large enough that the population ratios of the 3Po levels
are always close to the ratios of the statistical weights. More recently,
Wofsy, Reid, and Dalgarno (1971) have calculated cross sections for two of
the fine-structure transitions due to collisions with neutral hydrogen atoms.
They find a strong oscillatory behavior in the cross sections for small relative

energies.

The collisional cross section for excitation of the 3So level, which is
the upper level of the resonance triplet, is important for the solution of this
problem but was not accurately known when our computations were made.
Athay and Canfield (1970) have used cross sections of both 0.1 w ag (Q=0.1)
and Q = 0.4. Stauffer and McDowell (1966) have computed the cross section
by using an impact-parameter method. Judging from their curves, the most

probable cross section is between Q = 0.5 and Q = 2.0. On the other hand,
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if we evaluate the cross section by using Van Regemorter's formula (equa-
tion 123), we find, at 8000°, that Q = 1.03 x 10™ .

always yields insufficient emission in computed profiles and must be an

This extremely low value

underestimate of the cross section. Recently, Stone and Zipf (1971) have
measured total excitation cross sections for the 3So level of O I. They find
values somewhat higher than those predicted by Stauffer and McDowell and
conclude that excitation of 3So via cascade from higher levels is important.
In our later cases below, we use values close to those found by Stone and

Zipf.

It turns out that under many conditions, the reaction O + H+ ~H+07
can be the dominant factor in the ionization equilibrium of oxygen (see Field
and Steigman, 1971). The hydrogen ionization equilibrium will be little
affected by this reaction, owing to the relatively low abundance of oxygen.

The general effect of this reaction will be to drive the ionization equilibrium
of oxygen to practically the same degree of ionization as we have for hydi’ogen

(except for statistical weight factors), whatever that degree may be.

As an example, consider a situation such as that of the chromospheric

plateau near 20,000°, where we can take

N =3><1010,
e
10
NH+=3X10 B
8
NHI=3X10 >

T =2x10%
e

Then, using House's formula for ionization rate from the ground state of O I,

we have, for collisional ionization,
C = 0.40 sec“l
1k ’

whereas the rate for a given oxygen atom of the reaction

o+H —H+0"
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is, according to Field and Steigman,
C = 63 sec’ !
o-HT

So for ionization, this charge-exchange reaction is the most important by a
factor of order 100. A similar calculation for recombination gave a photo-
recombination rate of 5.0 X 10_3, with a rate for O+ + H— H+ + O of 0.6,

or once again an enhancement of order 100.

Because of the dominance of this reaction, we can compute the ratio of
optical depth in the center of the A 1302 line of O I to that in the head of the
Lyman continuum, assuming only an abundance of oxygen and a line-broaden-
ing temperature. Using an abundance 6.0 X 10_4, T, = 20,000 K, and an

A value for A 1302 of 1.375 X 108, we find

7(911) = 1.2
‘TC()\13OZ) ’

This is important, since the optical depth of the chromospheric plateau in the
Lyman continuum is strictly limited by the observations. Vernazza, Avrett,
and Loeser (1971) find an optical depth at the head of the Lyman continuum

for their models of the formation of the hydrogen spectrum of slightly less
than 0.1. We should therefore expect optical depths in A 1302 of approximately
0.05 in the chromospheric temperature plateau if this plateau is indeed

important in the formation of the O I resonance lines.

As explained in Section 3.3, PANDORA has a variety of forms in which
one can specify the photoionization and radiative recombination rates. For
O I, we made an initial calculation of these rates using the photoionization
cross sections of Figure 21 and the opacity routines contained in PANDORA.
The actual non-LTE radiation intensities in the Lyman continuum are thus
taken into account, since the opacity routines use the specified electron den-
sities and ground-state neutral-hydrogen densities that were taken from the
HSRA (Gingerich et al., 1971). For later calculations, we input these known

photoionization and recombination rates rather than calculate them afresh
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for each case. As pointed out below, we sometimes increased the recom-
bination rates by a constant factor, to partially take into account dielectronic

recombination.

5.4 Calculations and Results

Our first series of calculations was made by using a model atmosphere
that consisted of the Harvard-Smithsonian Reference Atmosphere (Gingerich
et al., 1971), on top of which was fitted a high-temperature ''plateau'' region
of 15,000 to 19,000°. Several different cases were computed in which we
varied some atomic parameters and used different models of the plateau
region. We will discuss some of these results but should point out in advance
that no reasonable combination of parameters and atmospheric model was
found that could yield good agreement between theory and observation of line
intensities, line profiles, relative intensities of the three lines, and limb-
brightening behavior. The only way in which we could obtain computed
intensities equal to those observed was to hypothesize that most of the line
emission arises in the plateau region, but in this case the line relative
intensities and the limb-brightening behavior would not agree with the obser-
vations. In general, for the portion of the liné formed at temperatures below
10,000°, our results agreed closely with those of Athay and Canfield (1970).
That is, the line intensity is only weakly dependent on the excitation cross
section, and in the wings of the line, the line profile depends strongly on the
Van der Waals broadening half-width that we adopted. To a first approxima-
tion, the line intensity is proportional to the square root of the excitation
cross section, which is what we expect for the surface value of the source
function of an optically thick line. We shall describe some cases illustrating

the points just made.

Case 1. A run was made using a model atmosphere with a plateau at
15,000° and a five-level atom. We used rather conservative values for the
collisional excitation rates and for the Van der Waals broadening constant, as
follows:

CE 5-1=1.56x10° (Q=0.22)
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and

CYW 5-1=5.01 x10 ° A for N. =10'® (= Griem's value)

(see Section 3 for the definitions of CE and CVW). In addition, the adopted
recombination rate in the plateau was probably somewhat low, in that we did
not take into account the effects of dielectronic recombination or charge-
exchange collisions with hydrogen. We used rates calculated directly from
the cross sections of Figure 21 and found a degree of ionization in the plateau

of about 0. 96, with an optical depth in A 1302 in the plateau of ~0. 05.

In Figure 22, we plot Te, Ne’ NH, and NHI for this atmosphere. Below 1500
km, the atmosphere is the HSRA, plotted in Figure 26. In Figure 23, we plot S
,and Bv; the microturbulent velocity is shqwn in Figure 28. In Figure 24, we
show the line profile at disk center and at u = 0.3. In Figure 24 and later
figures in which we plot line profiles, we show two possible observed profiles
in the line core, denoted by a solid line and a dashed line. These profiles
correspond to the two possible profiles for each line published by Bruner et al.
(1970). Note the filled-in character of the core of the calculated line profile,
which is caused by emission in the plateau. This emission allows a good
agreement between observed and computed line-profile shapes, but not inten-
sities. The intensity calculated is 33, similar to the value 37 of Athay and
Canfield. For this case, we calculated the maxir'num degree of limb brighten-
ing to be 1.40, taking the instrumental spatial resolution into account. Part
of this limb brightening is caused by the 1/u brightening of the intensity con-
tribution from the chromospheric plateau, so we might conclude that the
observed limb brightening of 1.15 or so implies that the contribution from

the plateau must be small. Of course, inhomogeneities might well affect the
limb-brightening behavior of this line, so we will not attempt to match exactly
the number 1.15. Another portion of the limb brightening is due to the large
increase in strength of the line wings for p = 0.3. This increase depends on
the adopted Van der Waals broadening constant. We discuss below the com-
parison between limb brightening in the A 1302 line, which is what we calculate

in our cases with five-level atoms, and the limb brightening in the sum of the
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A 1304 and A\ 1306 lines, which is the quantity observed by the OSO 4 satellite.
For our cases for which we use a six-level model atom, we can compute both

these limb-brightening curves and compare them.

Case 2. Since the computed line strength is so small for case 1, we
computed another case in which we used considerably higher values of
CE 5-1 and CVW 5-1 in order to obtain a greater computed line intensity.
Wé wished to determine whether it was possible that the low computed intensi-
ties for case 1 were due to an underestimate of the excitation and broadening
parameters. We therefore chose the following parameters, enhanced by fac-

tors of 8 and 10 over those of case 1:

CE 5-1 (\1302) = 1.34 X 107" (at T_ = 8000°)
- N
CVW 5-1 (A\1302) = 5.0x 10”4 x —HL
1016

This value of CE 5-1 corresponds to Q= 1.85. In this case, we have used
a slightly different model atmosphere from that used in case 1. We used a
model that is based on the HSRA below 1850 km height but that rises to a
plateau whose temperature is 18, 500° and has a width of 50 km, at a density
of Ne = 3.15 X 1010'. The higher temperature of the plateau, in comparison
with case 1, was suggested by the work of Vernazza et al. (1971) and is
similar to our last example for C II in Section 6. This higher temperature
makes the computed fractional ionization so great that the plateau plays a
smaller role in the computed line profiles and intensities for this particular
case than it does for case 1. In accordance with the last example in Section 6,
we have used a new variation of microturbulent velocity with height, such
that v = 0 in the chromospheric plateau. This is why the emission peaks in

the core of A 1302, as shown in Figure 25, are so narrow.

In Figure 23, we have plotted the source function for this case alongside _
the source function for case 1. It will be noted that in the vicinity of the local
maximum near 1300 km, the source function is enhanced over thaf of case 1
by a factor of approximately three, which is N9; this increase is due primarily
to the higher value of CE 5-1 and shows the relative insensitivity of the line

intensity to the collisional excitation cross section. In Figure 25, we show
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the profiles of the A 1302 line for case 2 atp = 1.0 and p = 0. 3. ‘The intensity
of this line at p = 1.0 is computed to be 84, while the limb-brightening curve
for this line reaches a maximum value of 1.13. This lower value of the limb
brightening is due mainly to the smaller amount of emission by the chromos-

pheric plateau.

Case 3. However, even with our very high choice of CE 5-1 and CVW 5-1
in case 2, we still compute an intensity for X 1302, which is a factor 4 to 5
too small. We are led to conclude that the adopted atmosphere has a tempera-
ture that is too low, particularly near the height 1300 km. At this height,
a relatively small change in temperature can cause a large change in Bv’ the
Planck function, and a similarly large change in the line source function. We
therefore made some calculations using a modification of the HSRA, in which
the temperature has been increased by up to 700° near 1300 km. In Figure 26,
we plot Te, Ne’ NHI’ and NH for this model, as well as for the standard
HSRA model for case 2.

Our new model atmosphere is not truly self-consistent, in that we have
not computed a new hydrostatic equilibrium atmosphere but have simply
increased Te at certain heights. This avoids certain problems in the compari-
son between various models, but of course a complete study would require

the recalculation of a new atmosphere for each temperature distribution.

It should be noted that a temperature increase of this magnitude is in-
compatible with the microwave observations plotted by Gingerich et al.
(1971, their Figure 2). The HSRA predicts an intensity curve that goes
through the tops of the microwave intensity error bars, and a 700° increase
would raise the predicted curve even more. Using a self-consistent atmos-
phere in hydrostatic and ionization equilibrium would not improve the agree-
ment, since although the temperature increase would be smaller, the increased
electron densities would cause radiation at a given wavelength to be emitted at
a higher point in the atmosphere, so the intensity increase would probably
correspond to at least 500°. Probably only a two-component atfnosphere can

produce good agreement with both the ultraviolet and the radio observations.
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In our cases 1 and 2, note that the maximum in the line profile for p = 1.0
occurs at A\ = 0.065, whereas the observed maximum occurs at approximately
AN = 0.050. In order to improve the agreement with this quantity, we have
found it necessary to reduce the microturbulent velocity, especially near
1000 to 1300 km. In Figure 28, we also plot the velocities used in case 3,
along with an indication of those in case 2. The values of CE 5-1 and

CVW 5-1 used for case 3 were the same as for case 2.

This change in the atmospheric model does in fact increase the source
function significantly. The maximum near 1200 km becomes 3.0 X 10_9, an
increase by a factor 6.7 above case 2. In Figure 27, we show the profiles
of A1302 for this case. The computed intensity at p = 1.0 is 298, while at
p = 0.3, we compute an intensity of 445, as compared with Dupree and Reeves'
(1971) value of 398. From an inspection of Figure 27, we can see that in this
case the brightening of A 1302 toward the limb is due to a broadening of the
distance between the two emission peaks, which accounts for an increase of
approximately 10%, and to the great increase in strength of the wings of the
line. Even for the very large Van der Waals broadening constant that we
have used in this case, our computéd strength of the line wings at p=1.01is
too low. Our total line intensity is reasonably close to the observed value,
so we feel this is a better approximation to the solar temperature distribu-
tion than that given by the HSRA. The limb-brightening parameter is com-
puted to be 1. 20 for the A 1302 line alone,

Case 4. Clearly, the profiles of case 3 show two much central absorption.
One way of improving the ratio of central to peak intensity is to hypothesize
the existence of a region of very high microturbulent velocity, which falls
around 1800 km, where the line source function is lower than its peak value
around 1100 km. We therefore computed one case in which we used such a
velocity distribution, which rises to 9 km sec_1 at 1800 km and decreases
toward greater and lesser heights. We have plotted this velocity curve in

Figure 28. Except for this change, all other parameters are the same as

for case 3.

This change does indeed alter the line profiles, although the difference

is not very great. In Figure 27, we show the line profiles at p = 1.0 and
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p = 0.3. The central intensities are increased over case 3 by about 25%,

and the peak intensities are decreased by a similar amount. The peak/center
ratio at p. = 1.0 is decreased from 5.5 for case 3 to 3.2 for case 4. Never-
theless, the agreement with observation is still unsatisfactory. Apparently,
more emission by the chromospheric plateau, or a microturbulent velocity
around 1800 km somewhat greater than 9 km sec—l, or both are required to
reconcile theory with observation. The intensity of the X 1302 line atp = 1.0
for case 4 is computed to be 290, while the limb-brightening parameter is
1.07. We thus see that this microturbulent-velocity distribution considerably

reduces the amount of limb brightening.

Case 5. Cases 5, 6, and 7 are closely related, in that they use exactly
the same atmospheric model and almost identical atomic constants. In these
cases, we have varied the rate of recombination to the ground state of O I, and
thus the amount of neutral oxygen in the plateau region, in order to investigate

the effects of different amounts of emission in the chromospheric plateau.

For case 5, we used an atmospheric model much like that of cases 3
and 4; the temperatures near 1100 km are slightly different, as shown in
Figure 26. We used a six-level model atom, in which we include all three of
the O I resonance lines. The atomic constants used are those tabulated in
Table 2, with the exception of the following:

As in cases 2, 3, and 4, we continued to use CE 6-1 = 1.34 X 10-7. Note
that CE 6-3 = CE 6-2 = CE 6-1. We also continued to use CVW = 1.0 X 10—4
in all three resonance lines. For case 5, we use recombination rates com-
puted directly from the photoionization cross sections of Figure 21, neglecting
effects of the resonance reaction with hydrogen, and neglecting any dielec-
tronic recombination effects. This choice results in a very high fractional
ionization in the plateau, approximately 0.998, and consequently a small
amount of emission in the plateau, and a plateau optical depth in A\ 1302 of
only 2 X 10—3. In Figure 29, we have plotted the profile of the \ 1302 line at
p = 1.0. The intensities of the three lines at u = 1 are tabulated in Table 4.

Case 5 is very similar to case 3, the differences being caused almost

entirely by the effects of the two lines that have been added to the calculation.
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Case 6. For this case, we have increased the recombination rate to the
ground state in the plateau by a factor 10 over case 5 and have thus consider-
ably reduced the fractional ionization, which falls to 0.98. Similarly, the
X 1302 optical depth in the plateau is increased to 2.0 X 10_2, which is probably
more realistic. Thus, we have more plateau emission than for case 5; in
Figure 29, we plot the \1302 profile at u = 1.0; and in Figure 30, we plot
the profiles of all three lines at p = 1.0. The source function is shown in
Figure 31. Note the surprising fact that indeed the "weaker'' A 1304 and X 1306
lines are more intense than X\1302, at least in the line cores. This is appar-
ently because the self-absorption of the central part of the line is stronger
in A 1302. Case 6 is a reasonably good fit to all the observations and is

probably our most realistic model, excepting perhaps case 9 below.

Most of our calculations reported in this chapter were made with only two
iterations on the radiative-transfer solution. For the cases that include only
one line, this is quite sufficient for good convergence, but for the cases with
three lines, we wished to check the effects of doing more iterations. For
case 6, we did four iterations and found that the intensities of the X 1304 and
A 1306 lines changed by up to 10% from the second to the fourth iteration,
while the limb-brightening parameter increased by about 2%. Accuracy of
this order is sufficient for our purposes, so we have not run four iterations

in the other cases.

Case 7. This is similar to cases 5 and 6, but we have increased the
recombination rate in the plateau by a factor four over case 6, and the chromo-
spheric emission becomes very important. This case probably exaggerates
the chromospheric emission; nevertheless, the line profiles are of some in-
terest. In Figure 29, we show the A 1302 profile at p = 1. 0, while in Table 4,
we tabulate some data on intensities and limb brightening. Note that the

limb brightening is much greater than is observed.

The source function for this case, and for case 5 as well, is almost
identical with that for case 6, plotted in Figure 31. The amount of chromo-
spheric plateau emission does not affect the source function very much, as
the major effect is simply to change the optical depth as a function of height,

near T = 10—2.
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Case 8. This is a totally unrealistic case, which was included only to
show the effects of extreme plateau emission. The recombination rate has
been increased to the point where the fractional ionization is only about 0. 60.
As we can see from Table 4, in this case the line intensities approach the
5:3:1 ratio that we would expect for an optically thin gas. In Figure 29, we
show the nonreversed A 1302 profile computed for this case, but we would
not expect such profiles to appear on the quiet sun. The broadening is caused
by a large microturbulent velocity, shown in Figure 28. In Figure 32, we
have plotted the limb-brightening parameter in A 1302 versus that in the sum
0of 1304 + N 1306 for the five cases with increasing quantities of chromospheric
emission. We can use this curve to estimate the limb brightening in
N1304 + X 1306 for cases 1 to 4, having calculated that in A 1302, and we find
that cases 2, 3, and 4 show too little limb brightening.
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Case 9. In Section 6 and in the Appendix, we conclude that the micro-
turbulent velocity could well reach values as high as 18 km sec-1 in the
chromosphere. We therefore felt it might be instructive to make one run in
which we have a very high microturbulent velocity in the height range 1500
to 1800 km, as shown by the curve in Figure 28. The other atmospheric
quantities and the atomic constants are the same as for case 6, except that
we have multiplied the plateau recombination by a factor 1.5 over that of
case 6, in order to improve the agreement of the limb brightening and the
line profiles. In Figure 33, we show the profiles of the three lines at
n=1.0 for case 9, and we tabulate the other data in Table 4. In Figure 20,
we show the limb-brightening curve for this case. The source function,

shown in Figure 31, is very similar to that of cases 5, 6, and 7.

This case shows the best agreement of all with the observations, although
the absolute intensities are slightly low. The degree of central reversal is
very different for the three lines, varying from strong central emission in

A 1302, to weaker central emission in A 1304, to central absorption in A 1306.

Case 10. In cases l through 9 we have used A values for the O I triplet
based on the results of Parkes et al. (1967). More recently, Lawrence (1969)
has shown that the f value for this transition is 0.046, rather than 0.021 as
found by Parkes et al. We have made calculations for one case, similar to
case 9, in which we have used the new, higher A values and correspondingly
higher radiative damping. In order to produce acceptable profiles, we must
also use a different microturbulent velocity distribution, which we show in
Figure 28. This velocity variation is very similar to the one we finally
adopted for Mg II (Figure 15, cases 2 and 3). The profiles for the three lines
at p = 1.0 are plotted in Figure 34, and the intensity and limb-brightening data
are tabulated in Table 4. Note that the intensities are slightly higher than
observed, while the limb brightening is considerably too great. Apparently
the emission calculated from the chromospheric plateau is somewhat too
large, and the increase in microturbulent velocity should be placed at a height
greater by approximately 40 km. These changes would improve the agree-

ment of the \ 1302 peak separation, the limb brightening, and the intensities.
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In summary, we must conclude that the temperature of the HSRA is too
low by about 500° in the region near 1100 k. A rapid increase in micro-
turbulent velocity occurs near 1500 km, and velocities near 18 km sec = are
reached. The chromospheric plateau emits an observable, but not dominant,

amount of radiation in the resonance lines of O I, especially the A 1302 line.
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PRECEDING PAGE BLANK NOT FILMED

6. THE CARBON II RESONANCE LINES

6.1 Introduction

The resonance lines of C II at 1334.52 and 1335.69 A (hereafter called
A 1334 and A 1336) are among the strongest in the solar ultraviolet spectrum.

There are actually three lines in the multiplet, caused by transitions between

2, 250 22 .
the ;sOZp PJZ/Z’ 3/2 ground state and the 2s2p D3/2, 5/2 excited state, but
the }?3/2 - D3/2 line is less than 209% as strong as the other two and is

masked by the almost coincident ZP;’)/Z - 2D5 /2 line. In Figure 35, we show

a term diagram for the lowest lying levels of C II (Moore, 1949).

The C II lines are formed in that part of the solar chromosphere where
C Il is most abundant and the lines are most easily excited — that is, between
10,000 and 25,000°. We have tried to determine the structure of the solar
atmosphere within this temperature range by matching all the observed

characteristics of the C II lines with the results of our theoretical calculations.

In our atmospheres, described in Section 6.4, we specify electron tem-
perature, electron density, total hydrogen density, neutral-hydrogen density, |
and microturbulent velocity as functions of physical height. Our models are
not altogether self-consistent in terms of hydrostatic equilibrium and hydrogen
ionization equilibrium but are rather a fitting of a model of the chromosphere-
corona transition region onto the top of a model of the photosphere and

chromosphere.

6.2 TheObservations

We have chosen to divide into four classes the observational data that
refer to the C II lines. These are (1) total absolute intensity integrated in
wavelength over the two lines, (2) the ratio of integrated intensities of the
two separate lines, (3) the profile of each line, and (4) the limb-brightening

curve of the two combined lines.
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(1) The intensity of the C II lines was first measured by Detwiler,
Garrett, Purcell, and Tousey (1961) as 0.1 erg cm-2 sec”! at the earth. A
study by Dupree, based on measurements made photoelectrically by the
Harvard experiment on OSO 4, gives the slightly lower value of 0.071 erg

crn-2 sec“1 at the earth, which can be expressed as 1.03 X 103

ergs cm
sec"l ster-l at the solar surface at the disk center. The OSO 4 experiment
was calibrated before launch, by comparison with a series of rocket spectra
(see Reeves and Parkinson, 1970b). Dupree and Reeves estimate that the
absolute intensities of the solar emission lines in this spectral region are
“accurate to within about a factor of two. We will adopt Dupree and Reeves'

value.
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(2) Detwiler et al. gave equal fluxes for the two C II lines. The rocket
spectra of Berger, Bruner, and Stevens (1970) yield a ratio A\ 1334/\X1336 of
1.02. However, a detailed analysis of the Harvard OSO 4 spectra by
J. Vernazza (1971, private communication) gives a value of 0. 73. As we
show below, we are able theoretically to derive ratios of this quantity up to
about 0. 84, but no higher. Owing to the uncertainty in the observations, we

do not try to match any specific value for this quantity.

(3) The profiles of the C II lines have been measured by Berger et al.
(1970). In Figure 36, we plot the observed profiles of both wings of the
A 1334 line as well as a typical theoretical profile. The curves have been
normalized at the centers to produce a best fit, so agreement depends mainly
on our choice of microturbulent velocities and on the fact that both shapes
are close to gaussian. For this reason, all our theoretical profiles are

virtually the same.
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(4) By the method described by Withbroe (1970b), an average limb-
brightening curve for the ''quiet sun' was derived from data obtained by the
Harvard OSO 4 experiment. Almost all points on the C II A 1335 spectrohelio-
grams lying between £10° solar latitude were used. A few points were rejected
after an inspection of the spectroheliograms, because it was judged that these
points were affected by active regions that extended to within the +10° equa-
torial belt. The derived limb-brightening curve is shown by the filled circles
on Figure 37. The noise in the observed data corresponds partially to the
fact that a variable number of data points, from 5 to 50, were averaged for
each point on Figure 37. We also plot in Figure 37 the limb-brightening
curves calculated for two theoretical models. These two theoretical curves
have maximum values of 1.35 and 1. 38, which we feel closely represents an
optimum fit to the observations. In what follows, we shall use the term ''limb-
brightening parameter'' to mean the maximum of the theoretical limb-brighten-
ing curve for a given model, for the two lines combined. The OSO 4 C II
spectroheliograms include radiation both from the lines and from the under-
lying continuum. Using the spectra of OSO 6, we determined that the con-
tinuum contributes only 3 to 4% of the total measured intensity and that the
continuum does not show marked limb brightening or darkening. So our C1II
curves should not be noticeably affected by the problem. The spatial resolu-
tion of the instrument was 1 arcmin, which limits the sharpness of the observed
limb-brightening curve near the limb of the sun. As in Section 7, our theoret-
ical limb-brightening curves include a correction for the effects of the finite

spatial resolution of the OSO 4 instrument.

We desired to obtain a new limb-brightening curve from the Harvard
experiment on OSO 6. However, the much higher level of solar activity
during the lifetime of OSO 6, combined with the fact that solar active regions
had approached closer to the solar equator than during the lifetime of OSO 4,
made our previous methods for deriving limb-brightening curves inapplicable.
A new type of data was now available, in the form of spectra; taken at several
points across the solar disk. These points were especially chosen, from almost
simultaneous spectroheliograms in the O VI A1032 line, to be as fl;ee from
activity as possible. By the use of these spectra, we hoped to produce a limb-
brightening curve for which the continuum near the C II lines had been sub-

tracted, so that the actual C II line limb brightening could be derived directly.
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An inspection of the spectra showed that even the points that had been
chosen to be free from activity were not really so, especially near the limb.
This fact could be seen by an inspection of the intensities of some optically
thin lines, such as O VIX 1032 or N III X 991, at various values of p across the
disk. If in fact the spectra had been made at quiet regions of the sun, we
would expect a 1/p intensity variation of these lines. The lines A1032 and
X 991 actually increase in intensity considerably more rapidly than 1/p toward
the solar limb, so we must find some means of correcting for the effects of

active regions in the line of sight.

Our first approach was to assume that all lines were enhanced by the same
factor, owing to the effects of active regions. Thus, one should multiply the
C II line intensity by a factor that brings some optically thin line, such as
O VIN1032, down onto a 1/p limb-brightening curve. This was done, but the
correction factors were such that the resulting curve for C II showed consider-
able limb darkening, which was in unacceptably poor agreement with the OSO 4

results.

Our next approach was to assume that the enhancement in the various
lines was not equal but that for each line it was proportional to the active
region/quiet region intensity ratios found by Noyes, Withbroe, and Kirschner
(1970). They found IA/IQ to be

CIIXN1334 4.60,
O VIX1032 6.30,
N III A 991 5.25.

For an optically thin line (say, A1032), let us denote the observed intensity
at radius p by 11032(p) and the intensity according to a 1/p brightening law

(assuming that we have some spectra from truly quiet regions near p = 0.0)

by 11032(p1 /H). Then we assume that

where q gives an active-area fraction, ranging from 0 for quiet regions to

1 for the case of active regions covering the whole spatial-resolution element
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of the spectrometer. The parameter q may vary somewhat more than this,
owing to the scatter of the data points. In analogy with equation (142), we

should also have

where 11334(pQ) is the desired X 1334 limb-brightening value for quiet regions.
In practice, the smallest value of p for which we had spectra was p = 0.343,
corresponding to p = 0.939. We assumed that the C II curve was essentially
flat out to this point and that the N III and O VI curves had risen to 1.12 times
their value at p = l 0, corresponding to a 1/p brightening law. Then equation
(142) can be solved for q, and the desired I

(143).

1334(pQ) determined from equation

We can derive two partially independent C II limb-brightening curves by
comparison of C II intensities with those of N III and O VI, respectively.

These curves are shown in Figure 38.

Another method of normalization of the spectra is illustrated in Figure 39.
The small dots were determined by simply using the intensity at A 909, a point
near the head of the Lyman continuum that shows a relatively flat limb-
brightening curve, as a standard intensity. That is, the points plotted are
simply [11334(p)/1909(p)] for each spectrum used. In order to eliminate,
insofar as possible, the effects of active regions, the available spectra were
divided into categories according to the intensity in the C II line. Spectra of
intensity above a certain value were considered to be contaminated by active

regions and were not used.

Note that the scatter of the points from the OSO 6 spectra is considerably
greater than that of the OSO 4 spectroheliogram points. This is primarily due
to the fact that the OSO 4 points have already been averaged, and each OSO 4
point plotted is an average of between 5 and 50 original data points. But near
the limb (p = 1.0), the OSO 6 points normalized through X\ 991 and A\ 1032 seem

to show definite limb darkening, and in fact the darkening is greater when we
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normalized by A 1032, while the points normalized at A 909 show strong limb
brightening. This is clearly an artifact of our method of data reduction and
would lead one to give more weight to the limb-brightening curve derived
from the OSO 4 data than to either of the curves derived from the OSO 6

spectra.

6.3 Atomic Data and C I lonization

It was decided to use a five-level model C II atom, consisting of the two
2P’O ground-state levels, the 4P state considered as one level, and the two
2D levels, plus a continuum. We shall discuss first the various atomic
collisional and radiative rates that must be specified and then the models of
the solar atmosphere for which calculations were made. The atomic param-

eters are tabulated in Table 5, for which an explanation follows.

We have numbered the five levels with the numbers in parentheses after
the level designations. In the table, we have used the convention of giving

exponents in parentheses.

The A values have been adopted from the experimental results of Lawrence
and Savage (1966). We have shown in parentheses the A 5-2 value that we would
obtain by using the ratio of A values within the multiplet as tabulated by Wiese
et al. (1966). For our actual calculations, we have omitted radiative transi-
tions from level 5 to level 2, since this line is weak and heavily blended with
the 4-2 line. The radiative and Van der Waals broadening half-widths have
been calculated according to equations (137) and (139), respectively. These
quantities appear not to be critical for the C II lines, since the lines are not

very optically thick and Doppler broadening dominates.

For the collisional transition rates between levels 1 and 5 and between
levels 2 and 4, we have used the general formula of Van Regemorter (1962).
We have expressed the rates in terms of the quantity CE I-J, defined by
equation (127). The parameter CE I-J is weakly temperature dependent,

and we have given values for Te = 15,000°. The rate of collisional excitation
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via the optically forbidden or weak 5-2 and 4-1 transitions should be much
smaller than via the allowed transitions, so we have set the 5-2 and 4-1

cross sections equal to zero.

No published detailed calculations of the cross sections for collisional
transitions between the 4P state and the 2P and 2D levels have been made.
As an estimate, we have simply used the same collision strength found by
Osterbrock (1970) for the somewhat similar intersystem line X 1909 in C III.
We find that excitation via the 4P level contributes 0.10 to 0. 20 of the total

line excitation.

The collisional transition rates for the fine-structure transitions 2-1
and 5-4 have been computed from the formulas of Bahcall and Wolf (1968).
We have chosen a collision strength between the 2D levels equal to that between
the 2P levels. At temperatures above about 9000°, transitions due to electron
collisions are the most important, with proton collisions smaller by about a
factor of 3. For temperatures below 9000°, neutral-hydrogen-atom collisions
become important. All three processes have been taken into account in our
calculations, although we express the rates in terms of the electron-number
densities. Bely and Faucher (1970) have derived proton-collision cross sec-
tions between the ground-state levels about four times greater than those that
we used. If this factor holds true for electron collisions as well, then the fine-
structure transition rates could be significantly increased. Wofsy et al. (1971)
have calculated the collisional cross sections at small energies for this transi-

tion due for collisions with neutral hydrogen atoms.

The collisional ionization rates were computed by the formula of House
(1964). After our computations were completed, accurate experimentally
determined cross sections for collisional ionization from the ground state of
C II were published by Aitken, Harrison, and Rundel (1971). The rates given
by the cross sections of Aitken et al. are somewhat higher than those that we
used. The photoionization rates from the ground-state levels were calculated
by the method of Burgess and Seaton (1960) as modified by Peach (1967). The
resulting cross section is smaller by about a factor of 2 than that given by
Henry (1970). Since the method of Burgess and Seaton cannot be applied to

photoionization from the 4P and 2D levels, we have simply made estimates.,
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We assume a Vv ~ cross-section dependence beyond threshold. We shall find
that the C II/C III ionization equilibrium is not crucial in the formation of

the C II lines, since at the temperatures that turn out to be of interest, almost
all the carbon present is in the form of C II. Emission from regions of high

temperature, with Te R 25,000 K, does not appear to be significant.

The computer code we use, PANDORA, treats only the ion whose lines
are being studied, together with the next stage of ionization. We determine
the relative population of C II and C III ions at the same time as we determine
the C II level populations. We must simultaneously determine the relative
populations of C I and C II at each point in our atmosphere. To do this, we
made a series of calculations with a six-level model C I atom, including
radiative transfer in both the A 1561 and the A\ 1657 lines. Our model atom con-
sisted of the 3P ground state plus the lowest lD, 1S, SSO, 3P0, and 3DO ex-
cited states. Our transition rates were taken from the papers of LLawrence and
Savage (1966), Van Regemorter (1962), House (1964), and Burgess and Seaton
(1960). We estimated the radiation temperatures in the various ionization
continua at each point in the atmosphere, on the basis of the intensity measure-
ments of Detwiler et al. (1961) and on calculations of optical depths at the
wavelengths of the various continua. We found that the ionization of C I (shown

C II/NC tot
of density-independent calculations such as those of House (1964). The effects

as the curve log N in Figure 40) is very different from the results
of photoionization by the solar-radiation fields are important, especially for
the temperature-minimum region, where the radiative recombination rates
ve C II/NC [ is nowhere less
than 10 ~, and carbon is almost entirely ionized at heights above 1300 km

in our model, where Te is still less than 6000°. In fact, we find a C1/C II

can be very small. Thus, we find that the ratio N

ionization equilibrium quite close to LTE.

6.4 Calculations

Knowing the C I/C II ionization, we have made a series of calculations
attempting to match the observational data. We chose a model atmosphere
in the photosphere and low chromosphere based on the Harvard-Smithsonian
Reference Atmosphere (Gingerich et al., 1971). In the region immediately

above 1860 km, our model has a density of N = Ne = 3 X 1010. Where

H tot
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the temperature rises above 40,000°, we have fitted this atmosphere onto a
region of steeply rising temperature with constant electron pressure, as

proposed by Dupree and Goldberg (1967).

We made some calculations with atmospheric models that rise smoothly
from a temperature near 10,000° to temperatures above 40,000°. In such
models, if we adjust the thickness of the atmosphere so as to obtain agree-
ment with the observed intensities, we always find that the bulk of the emis-
sion arises from an optically thin region with high temperature, near 40,000°.
The resulting computed limb brightening is much greater than is observed;
values of the limb-brightening parameter are found to be 1.8 to 2. 0. As before,
we have included the correction due to the finite spatial resolution of the
OSO 4 instrument in our theoretical limb-brightening curves. We sum the
intensities of both lines in computing the theoretical curves since the OSO 4

observations include both lines.

We are thus led to conclude that the flatness of the observed limb-
brightening curve implies the existence of a temperature plateau in the region
of formation of the C II lines. In Figure 41, we plot six different models of
the chromospheric plateau. We have given in parentheses the computed limb-
brightening parameter for each atmosphere. Since we estimate that the
observed limb-brightening parameter falls within the range 1.31 to 1. 38,
all the models except model 5 agree reasonably well with the observations
in this respect. All these models have been fitted onto the top of the HSRA
atmosphere, so that height zero in Figure 41 corresponds to 1860 km above
T5000 = 1. In Figure 40, we plot all the important atmospheric quantities for
model 1, including the C I/C II ionization ratio and the decrease in micro-
turbulence below 1700 km. The other models are identical to model 1 below
1860 km, and all our models have an electron density Ne =3.15 X% lOlO in
the region of the chromospheric plateau. In Figure 42, we show the detailed
behavior with height of the line-center optical depth in A\ 1336 and of the source
function for our model 4. In Table 6, we list the characteristics of each of

our models and show their agreement with the observations. We shall dis-

cuss the models and our conclusions at the same time.
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Models 1, 2, and 3 show the effects of even a small slope in the tempera-
ture-height relation on the computed limb-brightening parameter. These
models all have average temperatures in the plateau of 15,400° and plateau
widths of approximately 150 kmm. Note that for the relatively small tempera-
ture gradient of model 3, we still find a limb-brightening parameter slightly
greater than is observed. For these models and for models 4 and 5, we have
assumed that the widths of the observed line profiles are due to a combination
of thermal broadening, which contributes 5 km sec-l, and microturbulence,

for which we must assume the values in Table 6.

Within certain limits, we can satisfy the observations with a whole family
of model atmospheres with different chromospheric plateau temperatures and
different plateau widths. In the low temperature direction, the variation is
limited by the fact that the Lyman continuum originates at a region with
T, = 8300°, and therefore the plateau must be optically thin in the Lyman
continuum. In fact, recent work by Vernazza et al. (1971) implies that
the required optical thinness does not occur for plateau temperatures
less than 18, 000° or thereabouts. So our models 1, 2, and 3 are apparently

too cool.

If we assume, as we have above, that the line broadening is due to micro-
turbulence, we cannot match both the observed intensity and the limb brighten-
ing with any plateau temperature higher than 16,000°, as shown by our model
4. In Figure 42, we show the behavior of the source function and optical depth
in X 1336 for this model. Note that there is a local maximum in the source
function in the center of the chromospheric plateau and that the optical depth
of the plateau in the center of this line is of order unity. We find that an
optical depth close to unity is necessary in order to reproduce the observed

limb brightening.

Model 5 is an example of a plateau temperature of 18,500° and width of
60 km. We find that with a microturbulent velocity large enough to produce
the observed line widths, the limb brightening is 1.59, which is too high.
Alternatively, one might consider the possibility that the broadening of the line
is produced primarily by macroturbulence. Microturbulence is usually defined

as turbulence on a scale much less than the characteristic height range over
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which a line is formed, while macroturbulence has a scale much greater than
this size. In the case of C II, the lines are formed over a range of about

500 km, so any scale greater than this and less than the projected length of
the spectrograph slit, which was several times 10% km, would be seen as
macroturbulence. A spectrograph with high spatial resolution should show
the line profiles of individual macroturbulent elements, which might have
narrow widths but centers displaced with respect to one another. Averaging
over many macroturbulent elements would produce a line profile with a width
greater than that of the profiles of the individual elements. For model 6, we
set the microturbulent velocity v equal to zero at all heights, and the resulting
increase in line-center optical depths produces good agreement with the limb-
brightening observations. Since the thermal velocity is 5 km sec_l, we could
have chosen values of v up to about 5 km sec_1 if we had wished, without much
difference in the results. High-resolution stigmatic spectra of small portions
of the sun should soon be able to show whether macroturbulence or microtur-

bulence is a better approximation.

In Table 6, note-that models 1 to 5 show reasonable agreement between
observed and computed ratios of intensities X1334/\1336 if we accept
Vernazza's observation. Model 6 yields a value rather too low, while none
of our models yields values close to unity, as observed by Detwiler et al.
(1961) and by Berger et al. (1970). The computed values of this ratio are
sensitive to the fine-structure collisional rates between the sublevels of the
2P and the 2D states. Possibly, our fine-structure transition rates are too
low, but even with very strong coupling, we never compute values for the
ratio A 1334/X 1336 greater than'O. 84. The observations of this ratio should

be improved in the near future.

Note that given one model of the chromospheric plateau, we can quite
easily find other models, with different temperatures and densities, that
satisfy the same intensity and limb-brightening observations; To a good
approximation, since the C II lines are "effectively optically thin, ' the

intensity is simply proportional to the number of line photons created:

>FJ. Vernazza has recently revised his meth%% of data reduction and now

measures a ratio X 1334 /X 1336 of 0. 85 +8' 01 (1971, private communication).
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2 ~ hv
I« Ne AZ exp< kT) s (144)
where AZ is the thickness of the chromospheric plateau, while the optical

depth is given by

-1

Dop (145)

TXN AZ v
e

If we hold these two quantities constant, we can produce new atmospheres

with different values of N, - (We have omitted the dependences on the A values
and excitation cross sections, which are proportional to 7 and I, respectively.)
For instance, for model 6 our total pressure in the plateau region is 0.16 dyne
cm_z. Values as low as 0.10 dyne crn-2 are commonly quoted for the pres-
sure in the chromosphere-corona transition region, so we might wish to com-

pute a new atmosphere for this pressure. Equations (144) and (145) vield

Ne= 1.77><lOlo s

AZ = 107 km ,

T = 20,500°
e

This model resembles some of those used by Vernazza et al. (1971) in their
analysis of the Lyman lines and continuum. Note that this is the model of the
very highest temperature we can allow, even assuming that microturbulence

is negligible.

In conclusion, we should reiterate our main point that only models with
definite chromospheric temperature plateaus can satisfy the observations.
Various plateaus with temperatures in the range 15,000 to 20, 500° and widths
from 60 to 160 km can yield good agreement with observations; the question
of whether the line broadening is due to microturbulence or macroturbulence

is very important.
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PRECEDING PAGE BLANK NOT FILMED

7. THE CARBON III LINES

7.1 Introduction

Carbon IIl is an ion of the beryllium-like sequence and as such has a
singlet and a triplet system of energy levels. Figure 43, of the energy-level
diagram for C III, indicates the X 977 singlet line and the A 1176 triplet
line. The X977 line is one of the strongest in the solar ultraviolet spectrum.
This line was tabulated by Hinteregger (1965) as having an intensity of
0.08 erg cnn_2 sec_l at the earth's distance from the sun, and by Dupree
and Reeves (1971) as having a disk-center intensity of 900 ergs crn—2 sec-1
st:er_1 at the solar surface, which corresponds to about 0.76 of Hinteregger's
earlier value. The aBsolute accuracy of Dupree and Reeves' value is esti-
mated to be within about a factor of 2. This line has been studied by Withbroe
(1970a), who derived a line-center optical depth of 0.56 from the observed
line intensity alone. Withbroe also measured the limb brightening of this
line from OSO 4 data and found that the degree of limb brightening is con-
siderably smaller than a 1/p law would yield. He found good agreement
between the observed limb brightening of X 977 and the limb brightening that
he calculated using the model defined by Dupree and Goldberg (1967, Figure\ 3).
In the region Te < lO5 K, where C III is most abundant, the model of Dupree
and Goldberg is poorly defined by the observational points, and Withbroe
chose a '"best" curve, which he does not specify. His model yielded an optical

depth close to 0.56. We should like to determine and define more clearly

the range of model atmospheres that will fit the data on the X 977 line.

The subordinate triplet line, N\ 1176, is optically thin and shows limb
brightening close to a 1/p law. Withbroe did not study this line, since it is not
a resonance line. Dupree and Reeves tabulate the disk-center intensity of
this line as 248 ergs cm_z sec_1 ster-l. It turns out that the relative intensi-
ties of the A 1176 and X\ 977 lines depend on electron density in the region of

log Ne =10 to 11, because under these conditions radiative deexcitation of one
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of the triplet levels via the 3Pi)-lSO, A 1909 transition, which has an A value

of 190 sec_1 according to Garstang and Shamey (1967) and Osterbrock (1970),
competes with collisional deexcitation of the three 3P levels. So in principle,
one might expect that, given the three observed quantities of the limb brighten-
ing in X 977 and the intensities of A 977 and A 1176, it would be possible to
determine the average temperature, the electron density, and the physical
thickness of the region of the atmosphere where the C III lines are formed.

We will investigate to what extent this can or cannot be done.
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Figure 43. Energy levels for C III.
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7.2 The Resonance Line

First, we shall discuss the problem of the ionization equilibrium of
carbon. As we pointed out in connection with the C II lines, the work of
Burgess and Sommers (1969) implies that for densities close to 1010 crn—3,
neither the curves of House (1964) nor those derived from the assumptions
of Allen and Dupree (1969) are valid. Jordan (1969) has calculated ioniza-
tion equilibria for carbon, using a temperature-density variation appropriate
for the solar atmosphere. She has taken into account in an approximate way
the effects of ionization from high bound levels, which reduce the dielectronic
recombination effects. In Figure 44, we show the ionization equilibria for
carbon as tabulated by various authors. In our calculations, we have used the

C II-C III ionization equilibrium of Jordan as input for our C III line computa-

tions.

- The C III/C IV ratio is determined internally by the computer code that
computes C III line formation. We found that in order to obtain the desired
ionization equilibrium, it was necessary to increase artificially the radiative
recombination coefficients by a factor of 25 over those derived from a direct
use of the quantum-defect method (Burgess and Seaton, 1960). Note that the
maximum abundance of C III occurs at 59,000 K, rather than at the 90,000 K
found by Allen and Dupree or the 47,000 K found by House.

Let us examine with a very simple model the formation of a line such as
CIII A977. For purposes of determining the intensity in this line, it is
probably not necessary to solve any line-transfer problem, since every
photon that is created will escape. In other words, eT << 1, and the line is
"effectively optically thin.' Solution of the line-transfer problem might be

important, however, in studying the degree of limb brightening in this line.

If we conceive of the X\ 977 line as being formed in a thin layer of thickness
AZ and of constant temperature with negligible microturbulence, we can deter-
mine its optical depth. We denote by F the flux in A 977 measured at the

earth's orbit, and by C12 the 1S — 1P collisional rate per C III atom in the
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ground state per electron per crn3. Then, since only half the photons gene-
rated will escape from the sun, while half will be emitted downward, if we

ignore excitations via the metastable 3P state, we have

2 i
4mR_ F = 4w R AZ N; C, N hv (146)

1
2
and denoting the line-center optical depth by Ty

=a. N, AZ (147)

where a, is the line-center absorption cross section, we obtain

0
Riu 2 ao F

T2 wC,..N : (148)
RO 12 "'e

Inserting the expression for C1 of Seaton (1964), which is

2

-5040% 35/ T

C..=1.70 x 10~ 3 Hi=i) 10 7
ij Xij T 2

(149)

o tl

with Xij given in electron volts, and inserting Te = 68,000 K and the value
N, = 8.83 x lO9 derived from Dupree and Goldberg's (1967) choice of a transi-

tion-region value of NeTe =6 X 1014, we have, upon reduction,

_0.1055
g

- (150)

Note that Van Regemorter's (1962) formula yields E = 0.20, while Pottasch
(1964) tabulates a Gaunt factor of 0.41. Thus, T, should fall between about

0
0.26 and 0.53.

Since, to a first approximation, the metastable 3P state is populated and

depopulated by collisions, we can immediately calculate the relative populations
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of the 3P state and ground state and thus derive a physical thickness for the
layer of formation of the C III lines. Using the f value of 0.81 from Wiese

et al. (1966), we find that at Te = 68,000 K, half the C III atoms will be in
the excited 3P level and the layers corresponding to our two estimates

of T above will be 34 and 69 km thick. Note that this is somewhat thicker
than implied by the atmosphere of Kanno and Tominaga, which is quoted by
Pottasch (1964). These authors find only 7.8 km between the temperature
limits of 50,000 and 100,000 K, although it is possible that these temperature

limits do not completely delimit the region of C III line formation.

As a first step, it was decided to study the A 977 line alone. To do this,
one must take into account direct excitation to the lPO level from the ground
level and also indirect excitation via the 3Po state. In Table 7 we tabulate
the set of atomic parameters adopted for a study of the X977 line. We have
separated the three 3Po levels, which are in fact separated by 23 and 57 cm_l.

We have used Moore's (1949) values for the energy levels. Our adopted
photoionization cross sections are tabulated for the heads of the various con-
tinua, and we have assumed a v-3 dependence of the photoionization cross
sections beyond threshold. Actual photoionization is negligible in comparison
with collisional ionization, but the photoionization cross sections determine
the photorecombination rates. As explained above, we have scaled up the
cross sections predicted by the method of Burgess and Seaton (1960) so as to
reproduce Jordan's (1969) ionization equilibria. The collisional ionization
rates are tabulated in terms of the quantities C I defined in equation (131).

We have used the formula of House (1964) (equation 130) to determine the
collisional ionization rates. For our initial work, we chose to calculate
excitation in the X 977 line according to the formula of Seaton (1964) (equation
149) with an averaged Gaunt factor E = 0.20. The collisional rates between
the ground state and the excited 3p° levels were calculated by using the
collision-strength calculations of Osterbrock (1970). For the transitions
between the >P° levels and the 1 P° upper level of the A 977 line, there are no
published calculations of collision strengths, so we used the same collision

1 ___3Po

strength as given by Osterbrock's calculations for the S collisions.

142



(9961 “ 1B 32 9591M) 1870 = (S| - ()3
: - s 238 ‘T =
(9961 *'T® 32 @sa1m) | 98 01 X 61 =(5, - ,d )V
(1961 “Kowreys pue Fueisaen) 0995 061 = (S - 1A )V
Z 09198¢ wnnuijuoy)
b 0S¥LET Nmm 38
€ eovLed H&m L
i BLELET Oa, 9
(1-0T X 1772 91-01%0°2 ¢ 16€201 mnf g
% %) - .
[1-01 X ¥LT gr-0T X 0°T S v6£2S wmm ig
:-oﬂxi. I ﬁ:.A:Xo 1 € AR N4 mmm €
:-OAX«; 1 h:.oﬁXo I 1 §1¢€¢s omm Z
[1-01X09°2 701X 0°s 1 0 S T
(1D) uoijeziuoiojoyd y3tom (-wo) 12497 Iaqunu
uo13eZIUOT 1eo1Is1IeIS uo1yRIIOXF 19497
1eUOISI[[0D

‘III D 107 sxiojsweled d>Twoly ') 919el,

143



The collisional rates within the 3PO term that we used were estimated from
various considerations. We included the effects of both electron and proton
collisions, using ratios of electron to proton density derived from a H-to-He
number-density ratio of 10 to 1, and e-stimated H and He ionization

equilibria. With such an assumed ratio Np/Ne’ we can still use equation

(127) to express the collision rates in terms of CE's. The proton-collision
cross sections were calculated by Munro et al. (1971), who somewhat improved
the assumed energy dependence of the cross sections of Bahcall and Wolf
(1968). The electron-collision cross sections for these transitions were also
calculated by Munro et al., using the original results of Blaha (1968), cor-
rected for exchange in the way used by Blaha (1969) and by Saraph, Seaton, and
Shemming (1969). Our derived curves for CEij(Te) are plotted in Figure 45.

A series of calculations was made using the set of atomic parameters
that we have described and several different atmosphere models. We assumed
that the C III lines were formed in a layer of constant electron pressure such
that NeTe =6 X 1014, and we varied the physical thickness, the temperature,
and the microturbulent velocity in the region of formation of the line. The
agreement between these results and the observations was reasonable but not
perfect, and we wish merely to note some points that are not highly dependent

upon the chosen atmosphere model.

The observed limb-brightening curve of Withbroe (1970a) agrees with
our calculated limb-brightening curve only if we adjust the thickness of the
formation layer so as to have a line-center optical depth of TS 0.55, which
when scaled according to Withbroe's convention yields T = 0.975, in good
agreement with Withbroe's value of 7= 1.00 and also with our independently
derived value of T = 0.53 from equation (150) with E = 0.20. In Figure 46,
we plot the limb-brightening observations from Withbroe (1970a) and our
curve for T = 0.54. The agreement of our curve with that derived theoretically
by Withbroe, and the agreement of our optical depth with his, imply that a
detailed solution of the radiative-transfer and statistical-equilibrium equations

is not necessary for a line so optically thin as this one.
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Figure 46. Comparison of C III limb-brightening observations of Withbroe
(1970a) with a theoretical curve of constant S and T 0.54.

For models that give the correct optical thickness in A 977, we find a
tendency to derive an intensity in \ 977 greater than that observed. Since
for a constant line-center optical depth the intensity in the line is propor-
tional to the broadening velocity, we are led to propose a broadening velocity
that is as small as possible. In the region of formation of C III, the thermal
broadening velocity is about 10 km sec-l, so the microturbulent broadening
velocity is apparently considerably smaller than 10 km sec_1 — that is,

2 5 km sec-l. High-resolution spectra will probably settle this point soon.
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We note it would seem unlikely that the regions of formation of C II and of
C III, which are directly adjacent to one another in the solar atmosphere,
should have microturbulent velocities as different as 16 and 5 km sec_l,

respectively.

Our models also indicate that approximately 50% of the total number of
C III atoms will be found in the 3PO levels, so it is incorrect to assume that
nearly all the C III is in the ground state. Nevertheless, computations such
as those reported above (equations 146 to 150) are valid since the propor-
tion of X 977 photons created by excitation via the 3PO states is relatively

small (~ 10%).

7.3 Inclusion of the Subordinate Line

It was decided that, since it appears that radiative transfer and optical-
depth effects in X977 are small, it would be best for us to do a series of
célculations of the populations of the various C III levels, neglecting radiation
in the lines and assuming one value for Ne and for Te. We could then study
the problem of matching the X\ 977 and A 1176 intensities and the optical depth
in N\ 977. We therefore wrote a computer program that solves the equations
of statistical equilibrium for levels one to five in Table 7, allowing us to vary
Ne and Te and, if necessary, the various collisional transition rates as well.
To compute the relative intensities of the X977 and A 1176 lines, we must
specify the collisional excitation rates of the six lines of the N\ 1176 multiplet.
We used equation (149), withg a variable parameter. We assumed in all our
calculations that g is equal for all transitions within this multiplet. The data

tabulated for this multiplet by Wiese et al. (1966) are given in Table 8.

Once we have computed the relative populations of levels 1 to 5, the

ratio of emissivities per cm3 in the A 977 and A\ 1176 lines is given by

€977 hVy77 (N € 5 # N, €5 g+ NgCy 4+ N, C

€1176 P76 N Cp 7 T N3(Cy + C

4-5)
C3—8) + N4(C

3.7t 4.7t Cy gl

(151)
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However, this emissivity is proportional to the total flux in the line, whereas
the observations of Dupree and Reeves refer to specific intensity at the center
of the sola}r disk. For a line that shows ]./p. limb-brightening behavior, it can
easily be shown that F = 2w I(u=1). For a line whose limb brightening is less
pronounced, the ratio of F to I(n=1) depends only on the limb-brightening

curve falling to w for a flat limb-brightening curve. We determined numerically
that the ratio F/I(u=1) corresponding to the observed C III A 977 limb-brighten-

ing curve is 4.67. Therefore, our deduced ratio of intensities is

1977 _ e977/4.67

= (152)
I176  €1176/6-283

By considering the absolute intensities of the lines, we can determine the
total number of C III ions per crn2 in the layer of C III line formation and thus

the optical depth in the center of A 977.

In other words, in general the three observed quantities 1977, 11176’
and TC()\. 977) serve to define uniquely Ne’ Te, and the thickness of the layer
of formation under our assumptions. It was found desirable to make this
calculation for a variety of assumed values of E(X 977), which we shall denote
by G, and of g(\1176), which we shall denote by G,. InFigure 47, we plot
the derived values of log Ne and log Te for various assumed values of G1 and
GZ' It turns out that it is only possible to satisfy the three observational
constraints on this problem with a limited number of (Gl, GZ) pairs of values.
In Figure 48, we plot a large number of trial pairs of (Gl, GZ) values,

indicating which pairs have consistent solutions for 1977, I and T

Only a narrow band of (Gl, GZ) pairs allows solutions. F01}1G716< 0. 40,9;:71'—1]is
band centers on G1 :GZ’ while for Gl > 0.40, we find G2 is slightly greater
than G1 . The form of the solution or lack thereof is indicated by the curves
on Figure 49. For (G1 = 0.20, G2 = 0.20) and (G1 =0.41, G2 = 0.33), we
have plotted curves for points that yield layers of line formation satisfying
two of the three constraints. The curves labeled ratio (GI’GZ) yield correct
X 977 intensities and correct AN977/X\ 1176 intensity ratios, while the curves

labeled -r(Gl, GZ) yield correct A 977 intensities and correct v values for A 977.
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47. Log Ng and log T found from consistent solutions for Ig77, 11176,

and T.(A\977) for various values of the averaged collisional Gaunt

factors (A 977) and (A 1176), denoted by (G, G,).
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For (G, =0.20, Cx2 = 0.20), these two curves cross at the point log T, = 4. 88,
log Ne = 9. 84, which satisfies all the observations. For (G1 = 0.41, GZ = 0.33),
the two curves do not cross at any point, which means that no consistent solu-

tion is possible.

107-096
[ T I I | |
0.7+ ]
e SOLUTION EXISTS oo
© NO SOLUTION EXISTS o9
O e 20O
06} 00 ¢ O —
0O ©
0O
0+ 00
O O e o O
0.5 OO0 e « 00 _
O e o« OO
OO s ¢ O
OO e ¢ o O
OO0 e ¢ ¢0
0.4 O+ s 00 —
= O ® o o OO0
g (M176) = G, 00+ e00
OO ¢ & o0
OO0 e ¢ «0
0.3 O ¢ ¢ ¢ O —
O e s e00
O e ¢ OO0
QQ0Oese o O O
8::::00
02583 gg
BELY etal. MUNRO et al.
VAN REGEMORTER (1962) (1963) (1971)
] i i ] ] |

0.1 0.2 O_._3 0.4 0.5 06
g (A\977) = G,

Figure 48. Region of possible consistent solutions for Ig77, I;174, and
Tc(N977) as functions of the averaged collisional Gaunt factors
g(\977) and g(\1176).

151



107-096

5.0 .

(0.20,0.20)

log T, 4.8 .
RATIO
(0.20,0.20)
7(0.20,0.20}
a7 .
RATIO(0.41,0.33)
4.6k .
7(0.41,0.33)
4.5 1 1 | 1 |
9.8 10.0 10.2 10.4 10.6
log Ne

Figure 49. Curves of the loci of points in the log Ng, log Te plane that satisfy
the Ig77 and I; 74 observations (labeled 'ratio") and of points that
satisfy the Ig77 and 7c(A977) observations (labeled '"v''). Numbers
in parentheses are B(A977) and E(A1176) used in calculating each
curve. :

In Figure 47, the straight sloping line defines N T = 6 X 1014, which
is the transition-region value proposed by Dupree and Goldberg (1967). We
have placed arrows on the Te axis to indicate the temperatures at which C III
composes 90 and 50% of the total amount of carbon. It would be hoped that
upon using the best available values of Gl and GZ’ Wé would arrive at a point
in Figure 47 where C III is the dominant form of carbon. We find that in fact
all the points for consistent (Gl’ GZ) pairs do fall at temperatures where C III

dominates, so this is no problem.
Many theoretical values for G1 and G2 have been calculated.. The general

formula of Van Regemorter (1962) gives G, =0.20, G, = 0.20. But this

formula has been shown to underestimate §'s for highly charged ions (Bely,
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Tully, and Van Regemorter, 1963). The results of Bely et al. were used by
Pottasch (1964) to derive an estimate of Gl = 0.41. More recently, detailed
calculations have been made by Eissner (quoted by Tondello and McWhirter
(1971) and by Jordan (1971)), which have been used by Munro, Dupree, and
Withbroe (1971). From the collision Strengths used by Jordan, we derive
G, =0.30, G, = 0.53, while from the collision rates of Munro etal. (1971),
we derive G1 = 0.52, G2 = 0. 37. Since the results of Eissner have not been
published, we cannot easily reconcile these discrepancies. The calculated
Gi' s are weak functions of temperature, but this effect will not settle the
disparity in these quoted values. We also note that neither of these last

two pairs of Gi values yields a consistent solution, as can be determined

by an inspection of Figure 48. On Figure 48, we show by arrows on the G1

axis the values of this variable given by Van Regemorter, by Bely et al.,

and by Munro et al.

We desired to make some more detailed calculations of the C III line-
formation problem, using the computer code employed in the previous chapters.

However, first a choice of G, and G2 had to be made. It was decided that

1
(G1 = 0.40, G2 =.0.42) represents a reasonable choice for the Gi's. The
average parameters implied for this model by our calculations are the
following:
T = 57,400° ,
e
= 6.61 x 107
e
N T =3.80x10%
e’ e
AZ = 35 km (not including dilution due to ionization equilibrium) ,

38 km (including dilution effects) .

A model of the region of formation of the C III lines was formulated on
the basis of these parameters. In Figure 50, we show the variations with
height of the temperature, electron density, total hydrogen density, and
source function for the A 977 line. We take as our zero point of height that
at which Te = 20,000 K. This atmosphere has a base temperature and
density that will fit onto the top of the atmospheres derived in Section 6.
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model of the formation of the C III lines.
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The actual derived values of T 1977, and ratio A977/X 1176 for this model are
0.564, 845 ergs crn-2 sec ster'l, and 3. 65 instead of the values 0. 558,
900, and 3.63 that are observed, but this difference is small compared to the

observational errors.

Note that a local maximum of the source function for A 977 occurs near
the center of the region of line formation, even though T, <1 and the tempera-
ture increases monotonically outward. It appears that the formation of this
line could be reasonably well represented by a layer of constant ¢ B, of finite
optical depth, as discussed in Section 1. The apparent existence in Figure 50
of a temperature plateau at approximately 60,000 K is not based on any firm
observational evidence but rather derives from the somewhat arbitrary way
in which the temperature curve was drawn. Our atmosphere has a consider-
ably lower density and greater depth than most previously published models of
this portion of the solar atmosphere. For instance, the model by Pottasch
(1964) rises from T_ = 20,000 K to T_ = 10° K in only 14 km, while
NeTe ~ 7 X 1014 as compared with our value of NeTe ~ 4 X 1014. Since the
intensity in a line is proportional to Ni AZ, where AZ is the thickness of the
layer of line formation, we would expect near agreement of this quantity for
the two models, which is in fact found. So to some extent, the only new

quantity that we have determined from this study of the C III lines is the

value of NeTe in the low transition region.
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8. CONCLUDING REMARKS

In the chapters on individual lines, we have arrived at several definite
or tentative conclusions about the conditions responsible for their formation.
Some of these ideas have appeared several times in different sections. Here
we bring together our various conclusions and inferences relating to the
structure of the solar atmosphere and outline some of the resulting picture

of the sun's outer layers.

The temperature-height relation of the solar chromosphere and
chromosphere-corona transition region was discussed in Sections 4 through
7. We find that the great intensity of the O I lines implies a chromospheric
temperature approximately 500 K greater than that of the HSRA atmosphere
in the height range around 1100 km. The Mg II lines are consistent with this
conclusion but are not very sensitive to such chromospheric temperature
differences. Above the region of Lyman-continuum formation, the C II results
imply a temperature plateau, with a temperature and width of close to 19,000 K
and 60 km, respectively. At temperatures above 20, 000 K, we find from the
C III results a rise to 100, 000 K in about 43 km, with a slight indication of a

smaller temperature gradient near 60, 000 K than above or below this point.

These temperature plateaus in the regions of formation of the C II and
C III lines deserve further comment. In our calculations, the main evidence
for the existence of the plateaus is the limb-brightening data from the OSO 4
satellite. It is possible that effects due to lack of spherical symmetry in the
actual line-formation situation might make deductions from limb-brightening
data unreliable. For instance, even within the plane-parallel approximation,
if one were to consider line formation in a two-component atmosphere wherein
most of the emergent radiation comes from the hotter, denser component
covering only a fraction of the solar surface, then for a given effective tem-
perature of formation, the optical thickness of a line such as C III X977 would

be considerably increased if we held the total line emission constant.
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Conversely, the effective temperature of line formation would be increased
for a given optical depth. This would probably have the effect of smoothing
out the temperature-height relation between 20,000 and 100, 000 K, as i
deduced from the behavior of the C III lines. For the C II lines, with a given
optical depth in the 19, 000° plateau, we could hypothesize a larger micro-
turbulent velocity than in the last models discussed in Section 6 and thus
improve agreement with the observed line profiles. If the large majority

of the C II emission occurs in a small fraction of the solar surface, it might
be possible to eliminate the 19, 000° plateau entirely and model both high-
emission and low-emission regions with smooth temperature-height curves.
Another model we might consider is that of C II emission in a very rough,

or '""bumpy, ! layer, such that the average projected thickness of the layer is
a weak function of p, the limb angle. Another very similar model is that of
Withbroe (1970a), which postulates the existence of spicules that rise through
the emission layer and reduce the visibility of the emission layer near the
limb. The spicules must be optically thick in the C II resonance lines and
have a relatively low source function. This model might be a reasonably
good representation of the true situation, but it would appear that the observed
intensity ratio of the two C II lines (between 0.85 and 1.00) argues that these
lines are not formed in an optically thin layer, while most models with
smoothly rising temperature predict emission from an optically thin layer,
if the emission arises from most of the solar surface rather than from a -

small area thereof.

In the sections on Mg II and O I, and in the Appendix on Ca II, we find
that it is useful to assume a microturbulent velocity that rises very rapidly
from a value near 5 km sec” ! to close to 18 km sec-l_. This increase has
the effect of making the central reversals not quite so deep and abrupt as
we would otherwise compute. The Mg II and O I (case 10) calculations agree
in placing this increase at a height of approximately 1600 km. ~For Call,
we treat the microturbulence and source function as functions of K line-
center optical depth, but judging from various published calculations (such
as Athay and Skumanich, 1968a,b, or Linsky and Avrett, 1970), it seems
very unlikely that o 10 in the K line, where we find v,
can occur as high as 1600 km. Apparently this difference is caused by our

increasing rapidly,
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attempt to reproduce the effects caused by inhomogeneities through the use
of a one-component atmosphere. To investigate this point, it would be
valuable to see whether one two-component atmosphere could reproduce the
profiles and center-to-limb behavior of Ca II, Mg II, and O I. In the section
on C II, we conclude that this microturbulence decreases again near the point
where T = 10, 000 K (1860 km in the HSRA model) so as to produce a small
predicted limb brightening as is observed, but as mentioned above, this is
uncertain. More probably, the atmosphere divides into two components,
only one of which contributes strongly to the C II emission intensity, and this
component has a microturbulent velocity of close to 16 km sec_l. A micro-

turbulence of this magnitude will produce line profiles of the observed width.

In the section on C III, we combine the observations of intensity in the

N 977 and X\ 1176 lines with the optical depth of the X 977 line to derive a

4anda

chromosphere —corona transition-region value for NeTe of 3.8 X 101
thickness between 30, 000 and 80, 000 ° of approximately 40 km. Other authors
have usually found NeTe values that are higher, between 6 and 10 X 1014.

Of course, the fact that some of the necessary atomic cross sections are
poorly known makes our value subject to revision. Nussbaumer (1971) has

very recently derived some new relevant data.

In order to make clear those atomic parametérs that we feel are most
important in interpreting the various lines we have dealt with, we present in
Table 9 a list of critical atomic parameters for four ions. Some of the
quantities listed are already relatively well determined, but most are not.
It is hoped that this list will encourage the study of these critical atomic

parameters.

Finally, we shall make some general remarks on the problem of match-
ing observed and computed line profiles. For lines formed in the chromo-
sphere, such as Mg II and O I (and probably C I, N I, and others), most
computed profiles show very narrow emission peaks, with deeply reversed
cores, while observations always show much more rounded and broader

emission peaks, with absorption cores that are not very deep. One is tempted
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Table 9. Critical atomic parameters.
Ion Atomic quantity Observational relevance
Mg II a) Van der Waals broadening Line profiles, center-to-limb
behavior
b) Collisional cross section Intensity
c) Fine-structure cross section Ratio of H and K lines
o1 a) Hydrogen charge-transfer rate Ionization tied to hydrogen
b) Collisional ionization cross Ionization equilibrium for
section T > 10, 000° if a) is small
¢) Radiative and dielectronic Ionization equilibrium if a) is
recombination small
d) 3So excitation cross section Intensity
e) Line-broadening constants Limb brightening, line profiles,
and ratios of different lines
f) f values for X 1302, X\ 1304, Intensity
and \ 1306
cu a) Fine~structure cross sections Ratio of two lines
for “D levels
b) Collisional rates to 4P level Intensity, intensity ratio
c) Collisional cross sections for Intensity, intensity ratio
N 1334, X\ 1336 lines
d) f value of X 1334 and X\ 1336 Limb-brightening behavior
lines
C III a) Collisional cross sections of Intensity, intensity ratio

X 977, N 1176, and l5=3p©°
and 3Po—1PO transitions

b) f value for N\ 977

c) A value for 3P? -1

S

Limb-brightening behavior

Intensity ratio
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to attribute this discrepancy to macroturbulence, which will smear the
underlying ''true' solar profile. But if this is the case, it should be possible
through the use of instruments with high spatial resolution to resolve the
individual macroturbulent elements and see the ''true' solar profile. Thus
far, for the Mg II H and K lines, on which the most work has been done,
there is very little indication that higher spatial resolution produces observed
profiles similar to those usually computed. Apparently the situation is more
complex than either pure macroturbulence or pure microturbulence, or even
a combination of the two. Atmospheric motions that strongly affect the line
profiles must be taking place on scales very similar to the characteristic
thicknesses of line-formation regions, producing an intermediate form of
turbulence, for which no satisfactory mathematical methods of treatment

have been advanced.

161



ERECEDING PAGE BLANK NoT FILMED

9. ACKNOWLEDGMENTS

First and foremost, I wish to express my thanks to Dr. Eugene H. Avrett
for advice and many useful discussions during all phases of my work and for
the devising and continuous updating of PANDORA. I also owe special thanks
to Dr. George L. Withbroe for discussions about the C III lines and the OSO
data and to Rudolf Loeser for help in resolving some questions concerning

the use of PANDORA.

Others at the Harvard College Observatory and at the Smithsonian
Astrophysical Observatory who have contributed to my knowledge of the sun
include Dr. Robert W. Noyes, Dr. Andrea K. Dupree, Richard H. Munro,
Dr. Wolfgang Kalkofen, and Jorge Vernazza, all of whom I thank.

Finally, I acknowledge my debt to the Smithsonian Research Foundation
for support via a Smithsonian Research Fellowship during most of my work on

this thesis.

During the past year, this research has been supported by the National
Aeronautics and Space Administration under contract NAS 5-9274 and grant

NGR 22-007-211.

163



PRECEDING PAGE BLANK NoOT FILMED

10. REFERENCES

AITKEN, K. L., HARRISON, M. F. A., and RUNDEL, R. D.
1971. Measurement of the cross section for electron impact ionization
of multi-electron ion II. N2+ to N3+ and C+ to C2+.
Phys. B: Atom. Molec. Phys., vol. 4, pp. 1189-1199.
ALLEN, C. W.

1961. Solar ultraviolet and x-ray line emission. Mem. Soc. Roy. Sci.

Journ.

Liége, ser. 5, vol. 4, pp. 241-250.
ALLEN, J. W., and DUPREE, A. K.
1969. Calculations of ionization equilibria for oxygen, neon, silicon,
and iron. Astrophys. Journ., vol. 155, pp. 27-36.
ATHAY, R. G.
1966. Theoretical line intensities. V. Solar UV emission lines of heavy
elements. Astrophys. Journ., vol. 145, pp. 784-795.
1969. Boundary conditions on model solar chromospheres. Solar Phys.,
vol. 9, pp. 51-55.
1970. A non-LTE line-blanketed solar model. Astrophys. Journ.,
vol. 161, pp. 713-736.
ATHAY, R. G., and CANFIELD, R. C.
1969. Computed profiles for solar Mg-b and Na D lines. Astrophys.
Journ., vol. 156, pp. 695-706.
1970. A self-consistent model atmosphere program with applications to

solar O I resonance lines. In Spectrum Formation in Stars with

Steady-State Extended Atmospheres, N. B.S. Spec. Publ. 332,
Washington, D.C.
ATHAY, R. G., MENZEL, D., PECKER, J.-C., and THOMAS, R. N.

1955. The thermodynamic state of the outer solar atmosphere V. A

model of the chromosphere from the continuum emission.
Astrophys. Journ. Suppl., vol. 1, pp. 505-519.
ATHAY, R. G., and SKUMANICH, A.
1967. An integral equation for the line source function and its numerical

solution. Ann. d'Astrophys., vol. 30, pp. 669-676.

165



ATHAY, R. G., and SKUMANICH, A.
1968a. Emission cores in H and K lines. I. The optically thick chromo-
sphere. Solar Phys., vol. 3, pp. 181-203.
1968b. Emission cores in H and K lines. IV. Center-to-limb variation.
Solar Phys., vol. 4, pp. 176-184.
AVRETT, E. H.
1965. Solutions of the two-level line transfer problem with complete
redistribution. Smithsonian Astrophys. Obs. Spec. Rep. No.
174, pp. 101-142.
1969. Lectures on the theory of line formation. Lectures delivered at
UCLA, Feb. 10-28, 1969 (unpublished).
1971. Solution of non-LTE transfer problems. Journ. Quant. Spectrosc.
Radiat. Trans., in press.
AVRETT, E. H., and HUMMER, D. G.
1965. Non-coherent scattering II: Line formation with a frequency
independent source function. Mon. Not. Roy. Astron. Soc.,
vol. 130, pp. 295-331.
AVRETT, E. H., and LOESER, R.
1963. A simple and accurate method for the evaluation of the Milne
integrals. Journ. Quant. Spectrosc. Radiat. Trans.,
vol. 3, pp. 201-208.
1966. Kernel representations in the solution of line-transfer problems.
Smithsonian Astrophys. Obs. Spec. Rep. No. 201, 114 pp.
1969. Formation of line and continuous spectra. I. Source-function
calculations. Smithsonian Astrophys. Obs. Spec. Rep. No.
303, 98 pp.
BAHCALL, J. N., and WOLF, R. A.
1968. Fine-structure transitions. Astrophys. Journ., vol. 152, pp.
701-730.
BAKER, J. G., ALLER, L. H., and MENZEL, D. H.
1939. Physical processes in the gaseous nebulae. VII. The transfer of
radiation in the Lyman continuum. Astrophys. Journ., vol. 90,
pp. 271-280.
BEEBE, H. A.
1971. Formation of the Ca II K-line core with arbitrary temperature

minima. Solar Phys., vol. 17, pp. 304-315.

166



BEEBE, H. A., and JOHNSON, H. R.
1969. Ca II resonance lines in non-homogeneous chromospheres. Solar
Phys., vol. 10, pp. 79-87.
BELY, O., and FAUCHER, P.
1970. Fine structure proton excitation rates for positive ions in the

2p, 2p5, 3p, 3p5 series. Astron. Astrophys., vol. 6, pp. 88-

92.
BELY, O., TULLY, J., and VAN REGEMORTER, H.

1963. L'excitation des atomes par chocs électroniques, application‘a
l'excitation des transitions de resonance dans les series
isoélectroniques du lithium et du sodium. Ann. Phys., vol.

8, pp. 303-321.
BERGER, R. A., BRUNER E. C., Jr., and STEVENS, R. 7J.

1970. Solar C II resonance line profiles. Solar Phys., vol. 12, pp. 370-
378.

BLAHA, M.

1968. Collisional excitations of positive ions in p9 configurations:
Transitions between levels of the P term, Partl. Ann.
d'Astrophys., vol. 31, pp. 311-321.

1969. Collisional excitation of positive ions in p9 configurations: Transi-
tions between levels of the P term, Part II. Astron. Astrophys.,
vol. 1, pp. 42-43.

BOHM-VITENSE, E.

1954, Uber die Temperatur- und Druckschichtung der Sonnenatmosphire.
Zeits. f. Astrophys., vol. 34, pp. 209-228.

BRUNER, E. C., Jr., JONES, R. A., RENSE, W. A., and THOMAS, G. E.

1970. Ultraviolet line profiles of O I in the solar spectrum. Astrophys.
Journ., vol. 162, pp. 281-285.

BRUNER, E. C., Jr., and RENSE, W. A.

1969. Rocket observations of solar ultraviolet emission lines. Astrophys.

Journ., vol. 157, pp. 417-424.
BURGESS, A., and SEATON, M. 7J.

1960. A general formula for the calculation of atomic photo-ionization

cross sections. Mon. Not. Roy. Astron. Soc., vol. 120,

pp. 121-151.

167



BURGESS, A., and SOMMERS, H. P.

1969. The effects of electron and radiation density on dielectronic

recombination. Astrophys. Journ., vol. 157, pp. 1007-1021.
CHAMARATUX, P.

1967. Calcul des raies du sodium neutre dans le spectre solaire sans
l'hypotht\ase de 1'équilibre thermodynamique local. Ann.
d'Astrophys., vol. 30, pp. 67-84.

CILLIE, G.

1932. The hydrogen emission in gaseous nebulae. Mon. Not. Roy.

Astron. Soc., vol. 92, pp. 820-831.
CORLISS, C. H., and BOZMAN, W. R.

1962. Experimental transition probabilities for spectral lines of

seventy elements. N.B.S. Mono. 53, Washington, D. C.
CUNY, Y.

1967. Determination exacte de la structure stationnaire d'une atmosph‘ere
d’hydrog‘ene. Ann. d'Astrophys., vol. 30, pp. 143-183.

1968. Contribution a 1'étude du spectre solaire de l‘hydrog‘ene. Solar
Phys., vol. 3, pp. 204-240.

DALGARNO, A., and DEGGES, T. C.

1968. Electron cooling in the upper atmosphere. Planet. Space Sci.,

vol. 16, pp. 125-127.
DEFOUW, R. J.

1970. Thermal instability of a model hydrogen plasma. Astrophys.
Journ., vol. 161, pp. 55-66.

DETWILER, C. R., GARRETT, D. L., PURCELL, J. P., and TOUSEY, R.

1961. The intensity distribution in the ultraviolet solar spectrum. Ann.
de Géophys., vol. 17, pp. 263-272.

DUMONT, SsS.

1966. Etude de la fonction source avec une largeur Doppler variable.
Comptes Rendus, vol. 262, pp. 740-743.

1967a. Formation des raies du Ca II et du Mg II dans la basse chromosph\ere.
Ann. d'Astrophys., vol. 30, pp. 421-437.

1967b. Contribution a 1'étude de la zone de transition entre la photosphére
et la chromospht‘ere 2 partir des raies de resonance de Ca II et

Mg II. Ann. d'Astrophys., vol. 30, pp. 861-885.

168



DUPREE, A. K., and GOLDBERG, L.

1967. Solar abundance determination from ultraviolet emission lines.

Solar Phys., vol. 1, pp. 229-241.
DUPREE, A. K., and REEVES, E. M.

1971. The extreme ultraviolet spectrum of the quiet sun. Astrophys.
Journ., vol. 165, pp. 599-614.

EDDY, J. A., LENA, P. J., and MacQUEEN, R. M.

1969. Far infrared measurement of the solar minimum temperature.
Solar Phys., vol. 10, pp. 330-341.

ELSTE, G.

1968. Comments on the Bilderberg Continuum Atmosphere. Solar

Phys., vol. 3, pp. 106-117.
ELWERT, G.

1952. Uber die Ionisations- und Rekombinationsprozesse in einem
Plasma und die Ionisationsformel der Sonnenkorona. Zeits. f.
Naturforschung, vol. 7a, pp. 432-439.

ENGVOLD, O.

1966. On the center-limb variation of the H- and K-lines of Ca II.

Astrophys. Norvegica, vol. 10, pp. 101-125.
FEAUTRIER, P.
1964. Sur la résolution numérique de 1'équation de transfert. Comptes
Rendus, vol. 258, pp. 3189-3191.
FIELD, G. B.
1965. Thermal instability. Astrophys. Journ., vol. 142, pp. 531-567.
FIELD, G. B., and STEIGMAN, G.

1971. Charge transfer and ionization equilibrium in the interstellar

medium. Astrophys. Journ., vol. 166, pp. 59-64.
FINN, G. D.

1967. Frequency redistribution on scattering. Astrophys. Journ.,
vol. 147, pp. 1085-1089.

FINN, G. D., MUGGLESTONE, D., and YOUNG, R. L.

1967. The solar sodium D-lines II. Scattering profiles. Mon. Not. Roy.
Astron. Soc., vol. 137, pp. 445-462.

GARSTANG, R. H., and SHAMEY, L. 7J.,

1967. Intercombination-line oscillator strengths in the helium and

beryllium isoelectronic sequences. Astrophys. Journ., vol.

148, pp. 665-666.

169



GINGERICH, O.
1970. A new solar model. Unpublished.
GINGERICH, O., and de JAGER, C.
1968. The Bilderberg model of the photosphere and low chromosphere.
Solar Phys., vol. 3, pp. 5-24.
GINGERICH, O., NOYES, R. W., KALKOFEN, W., and CUNY, Y.
1971. The Harvard-Smithsonian Reference Atmosphere. Solar Phys.,
in press.
GIOVANELLI, R. G.
1949. The hydrogen spectrum of the sun. Mon. Not. Roy. Astron. Soc.,
vol. 109, pp. 298-323.
GOLDBERG, L. _
1965. Observational requirements for a theory of formation of H and

K lines. In Proc. Second Harvard-Smithsonian Conf. on Stellar

Atmospheres, Smithsonian Astrophys. Obs. Spec. Rep. No.
174, pp. 389-396.
GOLDBERG, L., MULLER, E. A., and ALLER, L. H,.

1960. The abundances of the elements in the solar atmosphere. Astro-

phys. Journ. Suppl., No. 5, pp. 1-138.
GRIEM, H. R.
1964. Plasma Spectroscopy. McGraw-Hill Book Co, New York.
HEINTZE, J. R. W., HUBENET, H., and de JAGER, C.
1964. A reference model of the solar photosphere and low chromosphere.
Bull. Astron. Neth., vol. 17, pp. 442-445.
HENRY, R. J. W.

1970. Photoionization cross-sections for atoms and ions of carbon,
nitrogen, oxygen and neon. Astrophys. Journ., vol. 161,
pp. 1153-1155.
HENRY, R. J. W., and WILLIAMS, R. E.
1968. Collision strengths and photoionization cross sections for nitrogen,
oxygen and neon. Publ. Astron. Soc. Pac., vol. 80, pp. 669-679.
HINTEREGGER, H. E.
1965. Absolute intensity measurements in the extreme ultraviolet spec-

trum of solar radiation. Space Sci. Rev., vol. 4, pp. 461-497.

170



HOUSE, L. L.
1964. Ionization equilibrium of the elements from H to Fe. Astrophys.
Journ. Suppl., No. 8, pp. 307-328.
HOUTGAST, 7J.
1965. Absolute intensities in high dispersion solar spectra between
X 3000 and A\ 4000 Angstroms. Proc. Kon. Nederl. Acad.
Wetensch. Amst., vol. 68, ser. B, pp. 306-310.
HUMMER, D. G.
1968. Non-coherent scattering. III. The effect of continuous absorption
on the formation of spectral lines. Mon. Not. Roy. Astron.
Soc., vol. 138, pp. 73-108.
1969. Non-coherent scattering. VI. Solutions of the transfer problem
with a frequency-dependent source function. Mon. Not. Roy.
Astron. Soc., vol. 145, pp. 95-120.
JEFFERIES, J. T.
1960. The source function in a non-equilibrium atmosphere. VII. The
interlocking problem. Astrophys. Journ., vol. 132, pp.775-789.
1968. Spectral Line Formation. Blaisdell Publ. Co., Waltham, Mass.
JEFFERIES, J. T., and WHITE, O. R.

1960. The source function in a non-equilibrium atmosphere. VI. The

frequency dependence of the source function for resonance lines.
Astrophys. Journ., vol. 132, pp. 767-774.
JOHNSON, H. R.
1964. A theoretical study of the excitation of sodium in the solar
photosphere. Amnn. d'Astrophys., vol. 27, pp. 695-707.
JORDAN, C.
1969. The ionization equilibrium of elements between carbon and nickel.
Mon. Not. Roy. Astron. Soc., vol. 142, pp. 501-521.
1971. The relative intensities of lines from Be I-like ions in the solar
spectrum. To be published.
KALKOFEN, W.
1968a. The simultaneous solution of strongly coupled transfer equations.

In Resonance Lines in Astrophysics, Proc. Conf. held at National

Center for Atmospheric Research, Boulder, Colorado, Sept.

1968, pp. 3-26.

171



KALKOFEN, W.

1968b. Mapping methods in radiative transfer. In Resonance Lines in

Astrophysics, Proc. Conf. held at National Center for Atmos-
pheric Research, Boulder, Colorado, Sept. 1968, pp. 65-78.
KORFF, S. A.
1932. On the measurement and interpretation of Fraunhofer lines.
Astrophys. Journ., vol. 76, pp. 291-298.
LAWRENCE, G. M.
1969. Vacuum ultraviolet transition probabilities in C, N, O and N
Can. Journ. Chem., vol. 47, pp. 1856-1857.
LAWRENCE, G. M., and SAVAGE, B. D.
1966. Radiative lifetimes of UV multiplets in boron, carbon, and nitrogen.
Phys. Rev., vol. 141, pp. 67-70.
LEMAIRE, P.

2-

1969. High resolution balloon spectra of the sun in the Mg II doublet
lines II. Astrophys. Journ. Lett., vol. 3, pp. 43-48.
LINSKY, J. L.
1968. Calcium line formation in the solar chromosphere. Smithsonian
Astrophys. Obs. Spec. Rep. No. 274, 3 vols.
LINSKY, J. L., and AVRETT, E. H.
1970. The solar H and K lines. Publ. Astron. Soc. Pac., vol. 82,
pp. 169-248.
MANKIN, W. G., and STRONG, J.
1969. Solar far-infrared radiation (abstract). Bull. Am. Astron. Soc.,
vol. 1, p. 200.
McCREA, W. H.
1929. The mechanics of the chromosphere. Mon. Not. Roy. Astron.
Soc., vol. 89, pp. 718-730.
MILNE, E. A.
1930. Thermodynamics of the stars. In Handbuch der Astrophysik,
Springer-Verlag, Berlin, vol. 3, part 1, pp. 65-255.
MINNAERT, M.
1953. The photosphere. In The Sun, ed. by G. P. Kuiper, Univ. of
Chicago Press, Chicago, pp. 88-185.
MIYAMOTO, S.
1954. Contours of strong Fraunhofer lines. Publ. Astron. Soc.

Japan, vol. 6, pp. 140-149.

172



MOORE, C. E.
1949. Atomic Energy Levels, Vol. I. N.B.S. Circ. 467, Washington,

D.C.
MUNRO, R. H., DUPREE, A. K., and WITHBROE, G. L.

1971. Electron densities derived from line intensity ratios: Beryllium
isoelectronic sequence. Solar Phys., vol. 19, pp. 347-355,
NOYES, R. W., and KALKOFEN, W.
1970. The solar Lyman continuum and the structure of the solar
chromosphere. Solar Phys., vol. 15, pp. 120-138.
NOYES, R. W., WITHBROE, G. L., and KIRSCHNER, R. P.
1970. Extreme ultraviolet observations of active regions in the
chromosphere and the corona. Solar Phys., vol. 11, pp. 388-
398.
NUSSBAUMER, H.
1971. Astron. Astrophys. (in press).
OSTERBROCK, D. E.
1970. Excitation of C III A 1909 and other semiforbidden emission lines
in QSO's and nebulae. Astrophys. Journ., vol. 160, pp. 25-30.
PARKES, D. A., KEYSER, L. F., and KAUFMAN, F.
1967. Oscillator strength of the resonance triplet of atomic oxygen.
Astrophys. Journ., vol. 149, pp. 217-224.
PARKINSON, W. H., and REEVES, E. M.
1969. Measurements in the solar spectrum between 1400 and 1875 2’«. with
a rocket-borne spectrometer. Solar Phys., vol. 10, pp. 342-348.
1970. Quoted by Gingerich, Noyes, Kalkofen, and Cuny (1971).
PEACH, G.
1967. A revised general formula for the calculation of atomic photoioniza-
tion cross sections. Mem. Roy. Astron. Soc., vol. 71, pp. 13-
27.
- PLASKETT, H. H.
1931. The formation of the magnesium b lines in the solar atmosphere.
-Mon. Not. Roy. Astron. Soc., vol. 91, pp. 870-933,
POTTASCH, S. R.
1964. On the interpretation of the solar ultraviolet emission line spectrum.

Space Sci. Rev., vol. 3, pp. 816-855.

173



t

POTTASCH, S. R., and THOMAS, R. N.
1960. Thermodynamic structure of the outer solar atmosphere. VI.
Effect of departures from the Saha equation on inferred proper-
ties of the low chromosphere. Astrophys. Journ., vol. 132,
pp. 195-201.
REEVES, E. M., and PARKINSON, W. H.
1970a. An atlas of extreme-ultraviolet spectroheliograms from OSO-IV.
Astrophys. Journ. Suppl., vol. 21, pp. 1-30.
1970b. Calibration changes in EUV solar satellite instrumentation,
Appl. Opt., vol. 9, pp. 1201-1208.
ROSSELAND, S. '
1926. On the origin of bright lines in stellar spectra. Astrophys. Journ.,
vol. 63, pp. 218-235.
SARAPH, H. E., SEATON, M. J., and SHEMMING, J.
1969. Excitation of forbidden lines in gaseous nebulae. I. Formulation
and calculations for ZPq ions. Phil. Trans. Roy. Soc., vol.
A264, pp. 77-105.
SCHUSTER, A.
1905. Radiation through a foggy atmosphere. Astrophys. Journ., vol.
21, pp. 1-22.
SEATON, M. J.
1964. The spectrum of the solar corona. Planet. Space Sci., vol. 12,
pp- 55-74.
STAUFFER, A. D., and McDOWELL, M. R. C.
1966. An impact parameter treatment of the excitation of atoms by
charged particles. Proc. Phys. Soc., vol. 89, pp. 289-298.
STONE, E. J., and ZIPF, E. C.
1971. Excitation of the O 1 (3S) and NI (4P) resonance states by electron
impact on O and N. Phys. Rev. A, vol. 4, pp. 610-613,
THOMAS, R. N. ’ '
1948. Superthermic phenomena in stellar atmospheres. II. Departure
from thermodynamic equilibrium in an idealized chromosphere.

Astrophys. Journ., vol. 108, pp. 142-152.

174



THOMAS, R. N.
1957. The source function in a non-equilibrium atmosphere. I. The
resonance lines. Astrophys. Journ., vol. 125, pp. 260-274.

1965. Some Aspects of Non-Equilibrium Thermodynamics in the Presence

of a Radiation Field. Univesity of Colorado Press, Boulder,

Colorado.
THOMAS, R. N., and ATHAY, R. G.
1961. Physics of the Solar Chromosphere. Interscience Publ. Co.,
New York.
THOMAS, R. N., and GEBBIE, K. B,

1971. The solar chromosphere and the general structure of a stellar

atmosphere. In Menzel Symposium on Solar Physics, Atomic

Spectra and Gaseous Nebulae. NBS Spec. Publ., pp. 84-111,

in press.
TOMITA, Y.
1960. On the interpretation of the Fraunhofer line Na Dl' Publ. Astron.
Soc. Japan, vol. 12, pp. 524-551.
TONDELLO, G., and McWHIRTER, R. W. P.
1971. Measurements of excitation coefficients for singlet and triplet
transitions of neon VIII. Journ. Phys. B., to be published.
VAN REGEMORTER, H.
1962. Rate of collisional excitation in stellar atmospheres. Astrophys.
Journ., vol. 136, pp. 906-915.
VERNAZZA, J., AVRETT, E. H., and LOESER, R.
1971. In preparation.
WHITE, O. R., and SUEMOTO, Z.
1968. A measurement of the solar H and K profiles. Solar Phys., vol.
3, pp. 523-530.
WIESE, W. L., SMITH, M. W., and GLENNON, B. M.
1966. Atomic Transition Probabilities, vol. I. Government Printing

Office, Washington, D. C.

175



WIESE, W. L., SMITH, M. W., and MILES, B. M.
1969. Atomic Transition Probabilities, vol. II. Government Printing
Office, Washington, D.C.
WITHBROE, G. L.
1970a. Solar XUV limb brightening observations. II. Lines formed in the

chromospheric-coronal transition region. Solar Phys., vol. 11,
pp. 208-221.
1970b. Solar XUV limb brightening observations. I. The lithium-like
ions. Solar Phys., vol. 11, pp. 42-58.
WOFSY, S., REID, R. H. G., and DALGARNO, A.
1971. Spin-change scattering of C II and O I by atomic hydrogen.
Astrophys. Journ., vol. 168, pp. 161-167.
ZIRKER, J. B. |
1968. The solar H and K lines of ionized calcium. Solar Phys., vol. 3,
pp. 164-180.

176



4 &

APPENDIX

SOME REMARKS ON THE Ca II K LINE PROFILES

A-1



PRECEDING PAGE BLANK NOT FILMED

APPENDIX

SOME REMARKS ON THE Ca II K LINE PROFILES

Since the following work uses a different method of approach to the
problem of solar line profiles from that which we have used in Sections 4
through 7, it was felt best to place this work in a separate appendix. Since
so many investigators have studied the formation of the H and K lines of
Ca II, we did not feel it worthwhile to go over the same ground once more.
Instead, we have studied a restricted problem, which may be of some use
as a guide for more extensive and more self-consistent work in which a

computer program such as PANDORA is used.

The H and K lines of Ca Il have been extens‘ively studied, and many
attempts have been made to explain the profiles of the central portions of
these lines in the solar spectrum. Engvold (1966) and iater Zirker (1968)
devised iterative methods of extracting the source function (SK) and micro-
turbulent velocity (vt) as functions of optical depth directly from the observed
line profiles. Later authors, including Athay and Skumanich (1968), have
criticized the conclusions of Engvold and Zirker, saying that the iterative
methods do not yield unique results and that the peaks in the source functions

obtained by them almost certainly occur at unrealistically small optical depths.



More recently, Beebe and Johnson (1969) and Beebe (1971) have attempted
to explain the variation of the H and K line profiles across the solar disk

by means of a two-component model atmosphere. These two studies are not
wholly self-consistent, however, in that interaction between the two compo-

nents of the atmosphere is not considered.

We report here an attempt to find the extent to which a plane-parallel,
one-component model can reproduce the observed solar profiles. While it is
clear from photographs taken in the K line of Ca II that the region of the solar
atmosphere where this line is formed has a complex structure an< is by no
means homogeneous, we feel that the model of a plane-parallel atmosphere
should nevertheless be capable of yielding information about the true sun.
Athay and Skumanich computed profiles for a series of proposed depth varia-
tions of Doppler width, computing SK from the given atmospheric model. We
note that none of their graphs shows limb darkening at all wavelengths, as is
cerfainly required by the data of Zirker. We have computed a series of line

profiles for several assumed variations of v_ and SK with optical depth. Our

t

curves of A and SK have not been defined parametrically but have been chosen

by a successive-trial method, using information from previous cases as
judiciously as possible. Our '"best" profiles are shown in Figure A-1, where
the solid lines represent observations at u = 1.0 from White and Suemoto
(1968) and at p = 0.6, w =0.3, and p = 0.1 from Zirker (1968). We have
averaged the red and blue sides of the observed profile in each case. Our

adopted intensity for the continuum at A3933 is 2.27 X 10-5' erg cm-2 sec—1

-1 -1 . .
ster © Hz °, as derived by Linsky and Avrett (1970) from the data of Houtgast
(1965). This intensity corresponds to BV(6450 K). The corresponding dashed
~curves in Figure A-1 represent our ''best-fit'" profiles at these same p points.

The curves of v, (in km sec_l) and Sy (in units of ergs — sec !l ster ! Hz !

)

corresponding to the dashed profiles in Figure A-1 are shown in Figure A-2,
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For all the computations shown here, we have used Voigt profiles for
the atomic absorption profile. We have included damping due to natural
broadening, collisions with neutral hydrogen atoms, and collisions with
electrons. Since natural broadening is the dominant source of damping in
most of the regions of the solar atmosphere considered here, we do not
tabulate our broadening constants at each optical depth. We used values

similar to those in the computations reported by Linsky and Avrett (1970).

The theoretical profiles given here are in much closer agreement with
the observations than are those of Athay and Skumanich and are in at least
as good agreement as are those of Zirker. Defining A)\Z as the wavelength
displacement from line center to the peak intensity point, we find that the

computed variation of A\, with u is very close to the observations of this

2

quantity. On the basis of the calculated results, we conclude the following:
(1) In order to obtain computed limb darkening at all wavelengths, as is

observed, the variation of A with depth must be such that the region of large

SK and then decreasing SK

practically no effect on the emergent line profiles. In our model, this is

with increasing line-center optical depth has

achieved by the rapid decrease in vy from log 1, = 0.2 to log 7, = 3.0. This

0 0

decrease results in the fact that for AN > 0.25 &, the region 0.2 < log T5 < 3.4
is optically thin and contributes ve ry little emergent radiation, while for

A\ < 0.25 A&, the region above log Ty = 0.2 has sufficient optical thickness to

obscure the region log T > 0.2. Conversely, since the region 0.2 < log 7, < 3.4

0
does not affect the emitted profiles, the source function in this region is very
poorly determined and has been chosen primarily so that the outward increase
in the line source function occurs over the same region in log Ty as the greatest

increase in microturbulent velocity. This feature would be expected theo-

retically, as has been pointed out by Athay and Skumanich (1968).



(2) The brightness temperature corresponding to the minimum region
of SK is about 3900 K. This may be considered a strong objection against
the plausibility of our model if the line source function is equal to the Planck
function at this depth, but the Kl brightness temperature at p = 0.1 is 4070 K,
and the lower value of 3900 K is obtained by deriving an optimum fit to the
observed profile at n=0.1. The recent observations of Mankin and Strong
(1969) indicate a low temperature minimum, although not so low as 3900 K.
To demonstrate the effects on the computed profiles of an increase in the
minimum value of SK’ the light dotted curves in Figures A-1 and A-2 show the
results of a calculation with a minimum of SK corresponding to 4030 K. The

profiles are not very sensitive to this change, but the fit is made slightly

worse at p=0.1.

(3) The pronounced limb darkening at all wavelengths is caused in these
calculations by two factors. First, the only regions of the solar atmosphere

that contribute significantly to the emitted line profile have S_, increasing

K

inward, and second, the uppermost layer of the atmosphere, with o

a large Doppler width and a low S,,, which reduces the emergent intensities

<1, has

more strongly near the limb than near the disk center. Without this feature,
the limb darkening between A)\Z (. = 1.0) and A)\l (. = 0.1) is present, but
much reduced. Here we denote by A)\l the wavelength displacement from line
center to the secondary intensity minimum.

(4) The most difficult feature of the observations to reproduce is the
intensities at A)\l. All our calculations iﬁnply that the emergent radiation
at A)\l (4 = 1.0) is emitted over very nearly the same range of depths as is
the radiation observed at 0. 62 & (b = 0.1). The large differencé in observed

intensities (0.061 IC vs. 0.037 IC) is therefore hard to reproduce in our



computations. A somewhat sharper inflection in SK near log To = 4.5 will
improve the agreement between observed and calculated intensities in the
Kl region at p = 1, but the fit in the wing at all p points becomes worse, and

the separation of the computed K, (u = 1.0) and A\ = 0.62 (u = 0.1) intensities

1
is not changed. We illustrate this effect by the heavy dotted profiles in
Figure A-1 and the corresponding curve inFigure A-2. Possibly adetailed study

of well-normalized profiles in the wings of the K line would solve this problem.

Our results are not unique, in the sense that small changes in our curves
will not always change the agreement with the observations. As mentioned

above, S., in the region 0.2 < log o < 3.4 is very poorly determined, but

K

outside this region S., must be close to our curve except for very small optical

K

depths. It seems that the gradient in v, must be at least as steep as we have

t
plotted, although steeper gradients would give equally good results, and it

is possible that slightly smaller maximum values of v, could give acceptable

results.

The purpose of this Appendix has been to explore the possibilities of a one-
component model, as a basis of comparison with the results of two-component
calculations, and to serve as a starting point for possible future statistical-
equilibrium line-transfer calculations using one-component models. One
difficulty in this respect, which can be recognized on the basis of work
already done by Athay and Skumanich and others, is that detailed non-LTE
line-transfer calculations invariably yield source-function maxima at con-
siderably greater optical depths than we have postulated above. Athay and

Skumanich found the source-function maximum occurs near log T, = 3, while

0
our results are similar to those of Zirker and Engvold in having the maxima

at log To 1. It may not be possible to resolve this discrepancy within the

assumptions of a one-component model.
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